
SCALING IT UP:
BIG DATA & MAPREDUCE
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AN EXAMPLE PROGRAM
Present the concepts of MapReduce using the “typical example” of 
MR, Word Count

• Input: a volume of raw text, of unspecified size (could be KB, MB, TB, it 
doesn’t matter!)

• Output: a list of words, and their occurrence count.

(Assume that words are split correctly; ignore capitalization and 
punctuation.)

Example:

• The doctor went to the store. =>

• The, 2
• Doctor, 1
• Went, 1
• To, 1
• Store, 1
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MAP? REDUCE?

Mappers read in data from the filesystem, and output 
(typically) modified data

Reducers collect all of the mappers output on the keys, and 
output (typically) reduced data

The outputted data is written to disk

All data is in terms of key-value pairs   (“The”  2)
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MAPREDUCE VS 
HADOOP

The paper is written by two researchers at Google, and 
describes their programming paradigm

Unless you work at Google, or use Google App Engine, you 
won’t use it!  (And even then, you might not.)

Open Source implementation is Hadoop MapReduce

• Not developed by Google

• Started by Yahoo!; now part of Apache

Google’s implementation (at least the one described) is 
written in C++

Hadoop is written in Java
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MAJOR COMPONENTS
User Components:

• Mapper
• Reducer
• Combiner (Optional)
• Partitioner (Optional) (Shuffle)
• Writable(s) (Optional)

System Components:

• Master
• Input Splitter*
• Output Committer*
• * You can use your own if you really want!

Image source: http://www.ibm.com/developerworks/java/library/l-hadoop-3/index.html 2
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KEY NOTES
Mappers and Reducers are typically single threaded and 
deterministic

• Determinism allows for restarting of failed jobs, or speculative execution

Need to handle more data? Just add more Mappers/Reducers!

• No need to handle multithreaded code

• Since they’re all independent of each other, you can run (almost) 
arbitrary number of nodes

Mappers/Reducers run on arbitrary machines. A machine typically 
multiple map and reduce slots available to it, typically one per 
processor core

Mappers/Reducers run entirely independent of each other

• In Hadoop, they run in separate JVMs
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BASIC CONCEPTS
All data is represented in key-value pairs of an arbitrary type

Data is read in from a file or list of files, from distributed FS

Data is chunked based on an input split

• A typical chunk is 64MB (more or less can be configured depending on your use 
case)

Mappers read in a chunk of data

Mappers emit (write out) a set of data, typically derived from its input

Intermediate data (the output of the mappers) is split to a number of reducers

Reducers receive each key of data, along with ALL of the values associated 
with it (this means each key must always be sent to the same reducer)

• Essentially, <key, set<value>>

Reducers emit a set of data, typically reduced from its input which is written 
to disk
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DATA FLOW
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INPUT SPLITTER

Is responsible for splitting your input into multiple chunks

These chunks are then used as input for your mappers

Splits on logical boundaries. The default is 64MB per chunk

• Depending on what you’re doing, 64MB might be a LOT of data! 
You can change it

Typically, you can just use one of the built in splitters, unless 
you are reading in a specially formatted file
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MAPPER
Reads in input pair <K,V> (a section as split by the input splitter)

Outputs a pair <K’, V’>

Ex. For our Word Count example, with the following input: “The 
teacher went to the store. The store was closed; the store opens 
in the morning. The store opens at 9am.”

The output would be:

• <The, 1> <teacher, 1> <went, 1> <to, 1> <the, 1> <store, 1> 
<the, 1> <store, 1> <was, 1> <closed, 1> <the, 1> <store, 1> 
<opens, 1> <in, 1> <the, 1> <morning, 1> <the 1> <store, 1> 
<opens, 1> <at, 1> <9am, 1>
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REDUCER

Accepts the Mapper output, and collects values on the key

• All inputs with the same key must go to the same reducer!

Input is typically sorted, output is output exactly as is

For our example, the reducer input would be:

• <The, 1> <teacher, 1> <went, 1> <to, 1> <the, 1> <store, 1> 
<the, 1> <store, 1> <was, 1> <closed, 1> <the, 1> <store, 1> 
<opens, 1> <in, 1> <the, 1> <morning, 1> <the 1> <store, 1> 
<opens, 1> <at, 1> <9am, 1>

The output would be:

• <The, 6> <teacher, 1> <went, 1> <to, 1> <store, 3> <was, 1> 
<closed, 1> <opens, 1> <morning, 1> <at, 1> <9am, 1>
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COMBINER

Essentially an intermediate reducer

• Is optional

Reduces output from each mapper, reducing bandwidth and 
sorting

Cannot change the type of its input

• Input types must be the same as output types
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OUTPUT COMMITTER

Is responsible for taking the reduce output, and committing it 
to a file

Typically, this committer needs a corresponding input splitter 
(so that another job can read the input)

Again, usually built in splitters are good enough, unless you 
need to output a special kind of file
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PARTITIONER 
(SHUFFLER)
Decides which pairs are sent to which reducer

Default is simply:

• Key.hashCode() % numOfReducers

User can override to:

• Provide (more) uniform distribution of load between reducers

• Some values might need to be sent to the same reducer

• Ex. To compute the relative frequency of a pair of words <W1, 
W2> you would need to make sure all of word W1 are sent to 
the same reducer

• Binning of results
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MASTER
Responsible for scheduling & managing jobs

Scheduled computation should be close to the data if possible

• Bandwidth is expensive! (and slow)

• This relies on a Distributed File System (e.g. GFS)!

If a task fails to report progress (such as reading input, writing 
output, etc), crashes, the machine goes down, etc, it is assumed to 
be stuck, and is killed, and the step is re-launched (with the same 
input)

The Master is handled by the framework, no user code is necessary
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MAPREDUCE IN PYTHON
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def mapreduce_execute(data, mapper, reducer):
    values = map(mapper, data)

    groups = {}
    for items in values:
        for k,v in items:
            if k not in groups:
                groups[k] = [v]
            else:
                groups[k].append(v)

    output = [reducer(k,v) for k,v in groups.items()] 
    return output



MAPREDUCE IN PYTHON

Don’t do the last slide …

Python’s mrjob library:

• write mappers and reducers in Python

• Deploy on Hadoop systems, Amazon Elastic MR, Google 
Cloud
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from mrjob.job import MRJob

class WordOccurrenceCount(MRJob):
    def mapper(self, _, line):
        for word in line.split(" "):
            yield word, 1

    def reducer(self, key, values):
        yield key, sum(values)



MAPREDUCE?

Good:

• All you need to do is write a mapper and a reducer

• Can get away with not exposing any of the internals (data 
splitting, locality issues, redundancy, etc) if you’re using a 
ready-made engine

Bad:

• Lots of reading/writing from disk (in part because this helps 
with redundancy)

• Sometimes communication between processes is necessary

• Talk about later: parameter servers, GraphLab aka Dato, etc
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