SCALING IT UP:
BIG DATA & MAPREDUCE

Thanks to: Jeff Dean, Sanjay Ghemawa, Zico Kolter



My laptop
8GB RAM
500GB Disk

Big data?
No

“Big data”

Google Data Center
7?77 RAM/Disk
(>> PBs)

Big data?
Yes



Some notable inflection points

1. Your data fits in RAM on a single machine
2. Your data fits on disk on a single machine

3. Your data fits in RAM/disk on a “small” cluster of machines (you don’t
need to worry about machines dying)

4. Your data fits in RAM/disk on a “large” cluster of machine (you need
to worry about machines dying)

It's probably reasonable to refer to 3+ as “big data”, but many would only
consider 4



Do you have big data?

If your data fits on a single machine (even on disk), then it's almost always
better to think about how you can design an efficient single-machine
solution, unless you have extremely good reasons for doing otherwise

scalable system cores | twitter | uk-2007-05

GraphChi [10] 2 3160 6972s

Stratosphere [6] 16 23505 E scalable system cores | twitter | uk-2007-05

X-Stream [17] 16 | 1488 : Stratosphere [6] 16 950s

Spark [8] 128 | 857s 1759s X-Stream [17] 16 | 1159s -

Giraph [8] 128 596s 1235% Spark [8] 128 1784s = 80005

GraphLab [8] 128 249< 833s Giraph [8] 128 200s > 8000s

GraphX [8] 128 419s 4625 GraphLab [8] 128 242s Tlds

Single thread (SSD) 1 300s 651s GraphX [8] 128 251s 800s

Single thread (RAM) | 1 275s - Single thread (SSD) [ | 153s 417s |
Table 2: REIH]“Ed E]HP‘E-Ed times for 20 PH.gERHI'I]i it- Table 3: REPG["Z‘EI! E]HFE-Ed times for label propa-
erations, compared with measured times for single- gation, compared with measured times for single-
threaded il:l'l[]l-lf‘l]'llf‘l:ll.‘dti.ﬂl‘l!i from SS5I) and from RAM. threaded label [Il'ﬂ[:lilgﬂtiﬂ[l from SSD.

GraphChi and X-Stream report times for 5 Page-
Rank iterations, which we multiplied by four.

Tables from [McSherry et al., 2015 “Scalability! But at what COST”]



Distributed computing

Distributed computing rose to prominence in the 70s/80s, often built
around “supercomputing,” for scientific computing applications

- e

1971 - CMU C.mmp 1984 - Cray-2
(16 PDP-11 processors) (4 vector processors)



Message passing interface

APl

In mid-90s, researchers built a common interface for distributed
computing called the message passing interface (MPI)

MPI provided a set of tools to run multiple processes (on a single machine
or across many machines), that could communicate, send data between
each other (all of “scattering”, “gathering”, “broadcasting”), and
synchronize execution

Still common in scientific computing applications and HPC (high
performance computing



Downsides to MPI

MPI is extremely powerful but has some notable limitations

1. MPI is complicated: programs need to explicitly manage data,
synchronize threads, etc

2. MPI is brittle: if machines die suddenly, can be difficult to recover
(unless explicitly handled by the program, making them more
complicated)



A new paradigm for data processing

When Google was building their first data centers, they used clusters of
off-the-shelf commodity hardware; machines had different speeds and
fallures were common given cluster sizes

Data itself was distributed (redundantly) over many machines, as much as

possible wanted to do the computation on the machine where the data is
stored

Led to the development of the MapReduce framework at Google
[Ghemawat, 2004], later made extremely popular through the Apache
Hadoop open source implementation




AN EXAMPLE PROGRAM

Present the concepts of MapReduce using the “typical example” of
MR, Word Count

* Input: a volume of raw text, of unspecified size (could be KB, MB, TB, it
doesn’t matter!)

* Output: a list of words, and their occurrence count.

(Assume that words are split correctly; ignore capitalization and
punctuation.)

Example:

 The doctor went to the store. =>

° The, 2

* Doctor, 1
* Went, 1
° To,1

e Store, 1




MAP? REDUCE?

Mappers read in data from the filesystem, and output
(typically) modified data

Reducers collect all of the mappers output on the keys, and
output (typically) reduced data

The outputted data is written to disk

All data is in terms of key-value pairs (“The” ¥ 2)




MAPREDUCE VS
HADOOP

The paper is written by two researchers at Google, and
describes their programming paradigm

Unless you work at Google, or use Google App Engine, you
won’t use it!

Open Source implementation is Hadoop MapReduce
* Not developed by Google
e Started by Yahoo!; now part of Apache

Google’s implementation (at least the one described) is
written in C++

Hadoop is written in Java




MAJOR COMPONENTS

User Components:

l

° Mapper / Inpuldata \
* Reducer Map worker Map worker Map worker
* Combiner (Optional) N fervalvepars
* Partitioner (Optional) (Shuffle) / Intenmediate data \
- Writable(s) (Optional) |
Reduce worker Reduce worker Reduce worker

System Components:

* Master

* Input Splitter*

* Output Committer*

* * You can use your own if you really want!

rged kay'-value pairs
Y

Output data

l

Map phase

Reduce phase

Image source: http://www.ibm.com/developerworks/java/library/l-hadoop-3/index.html




KEY NOTES

Mappers and Reducers are typically single threaded and
deterministic

* Determinism allows for restarting of failed jobs, or speculative execution
Need to handle more data? Just add more Mappers/Reducers!
* No need to handle multithreaded code

* Since they'’re all independent of each other, you can run (almost)
arbitrary number of nodes

Mappers/Reducers run on arbitrary machines. A machine typically
multiple map and reduce slots available to it, typically one per
processor core

Mappers/Reducers run entirely independent of each other

* |n Hadoop, they run in separate JVMs




BASIC CONCEPTS

All data is represented in key-value pairs of an arbitrary type
Data is read in from a file or list of files, from distributed FS
Data is chunked based on an input split

* A typical chunk is 64MB (more or less can be configured depending on your use
case)

Mappers read in a chunk of data
Mappers emit (write out) a set of data, typically derived from its input
Intermediate data (the output of the mappers) is split to a number of reducers

Reducers receive each key of data, along with ALL of the values associated
with it (this means each key must always be sent to the same reducer)

* Essentially, <key, set<value>>

Reducers emit a set of data, typically reduced from its input which is written
to disk




DATA FLOW

Reducer 0
Reducer 1

Master n workers Master




INPUT SPLITTER

Is responsible for splitting your input into multiple chunks
These chunks are then used as input for your mappers
Splits on logical boundaries. The default is 64MB per chunk

* Depending on what you're doing, 64MB might be a LOT of data!
You can change it

Typically, you can just use one of the built in splitters, unless
you are reading in a specially formatted file




MAPPER

Reads in input pair <K,V> (a section as split by the input splitter)

Outputs a pair <K’, V’>

Ex. For our Word Count example, with the following input: “The
teacher went to the store. The store was closed; the store opens
in the morning. The store opens at 9am.”

The output would be:

* <The, 1> <teacher, 1> <went, 1> <to, 1> <the, 1> <store, 1>
<the, 1> <store, 1> <was, 1> <closed, 1> <the, 1> <store, 1>
<opens, 1> <in, 1> <the, 1> <morning, 1> <the 1> <store, 1>
<opens, 1> <at, 1> <9am, 1>




REDUCER

Accepts the Mapper output, and collects values on the key
e Allinputs with the same key must go to the same reducer!
Input is typically sorted, output is output exactly as is

For our example, the reducer input would be:

* <The, 1> <teacher, 1> <went, 1> <to, 1> <the, 1> <store, 1>
<the, 1> <store, 1> <was, 1> <closed, 1> <the, 1> <store, 1>
<opens, 1> <in, 1> <the, 1> <morning, 1> <the 1> <store, 1>
<opens, 1> <at, 1> <9am, 1>

The output would be:

* <The, 6> <teacher, 1> <went, 1> <to, 1> <store, 3> <was, 1>
<closed, 1> <opens, 1> <morning, 1> <at, 1> <9am, 1>




COMBINER

Essentially an intermediate reducer

* s optional

Reduces output from each mapper, reducing bandwidth and
sorting

Cannot change the type of its input

* Input types must be the same as output types




OUTPUT COMMITTER

Is responsible for taking the reduce output, and committing it
to a file

Typically, this committer needs a corresponding input splitter
(so that another job can read the input)

Again, usually built in splitters are good enough, unless you
need to output a special kind of file




PARTITIONER
(SHUFFLER)

Decides which pairs are sent to which reducer

Default is simply:
* Key.hashCode() % numOfReducers

User can override to:
* Provide (more) uniform distribution of load between reducers

* Some values might need to be sent to the same reducer

* Ex. To compute the relative frequency of a pair of words <W1,
W2> you would need to make sure all of word W1 are sent to

the same reducer
* Binning of results




MASTER

Responsible for scheduling & managing jobs

Scheduled computation should be close to the data if possible
* Bandwidth is expensive! (and slow)

* This relies on a Distributed File System (e.g. GFS)!

If a task fails to report progress (such as reading input, writing
output, etc), crashes, the machine goes down, etc, it is assumed to
be stuck, and is killed, and the step is re-launched (with the same
input)

The Master is handled by the framework, no user code is necessary




MAPREDUCE IN PYTHON

def mapreduce_execute (data, mapper, reducer):
values = map (mapper, data)

groups = {}
for items in values:
for k,v in items:
if k not in groups:
groups[k] = [V]
else:
groups [k] .append (v)

output = [reducer(k,v) for k,v in groups.items|() ]
return output




MAPREDUCE IN PYTHON

Don’t do the last slide ...
Python’s mrjob library:
* write mappers and reducers in Python

* Deploy on Hadoop systems, Amazon Elastic MR, Google
Cloud

from mrjob.job import MRJob

class WordOccurrenceCount (MRJob) :
def mapper (self, _, line):

for word in line.split (" "):
yield word, 1

def reducer (self, key, wvalues):
yield key, sum(values)




MAPREDUCE?

Good:
* Allyou need to do is write a mapper and a reducer

* Can get away with not exposing any of the internals (data
splitting, locality issues, redundancy, etc) if you're using a
ready-made engine

Bad:

* Lots of reading/writing from disk (in part because this helps
with redundancy)

* Sometimes communication between processes is necessary

* Talk about later: parameter servers, GraphLab aka Dato, etc




	Scaling it Up: Big Data & MapReduce
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	An Example Program
	Map? Reduce?
	MapReduce vs Hadoop
	Major Components
	Key Notes
	Basic Concepts
	Data Flow
	Input Splitter
	Mapper
	Reducer
	Combiner
	Output Committer
	Partitioner (Shuffler)
	Master
	Mapreduce in python
	Mapreduce in python
	Mapreduce?

