# Data Science 

Introduction to Machine Learning

$$
\text { July 6, } 2021
$$

Where were left off last time:

Preliminaries:

## Where were left off last time:

Preliminaries:

1. Different distributions

## Where were left off last time:

Preliminaries:

1. Different distributions
2. Different ways of reasoning about distributions (PDF, CDF)

## Where were left off last time:

Preliminaries:

1. Different distributions
2. Different ways of reasoning about distributions (PDF, CDF)
3. Beginnings of Hypothesis Testing

Bounds

## Bounds

1. We discussed ways to use the CDF of a distribution to get bounds on some value

## Bounds

1. We discussed ways to use the CDF of a distribution to get bounds on some value
2. Without running more trials (or gathering more data), we can increase certainty by widening our bounds

## Bounds

1. We discussed ways to use the CDF of a distribution to get bounds on some value
2. Without running more trials (or gathering more data), we can increase certainty by widening our bounds
3. But we weren't very concrete about how this relates to $H_{0}$ and $H_{1}$

## Significance and Power

We need to talk about two aspects of interpreting experimental results:

## Significance and Power

We need to talk about two aspects of interpreting experimental results:

1. Significance: How willing are we to reject $H_{0}$, even if it's true

## Significance and Power

We need to talk about two aspects of interpreting experimental results:

1. Significance: How willing are we to reject $H_{0}$, even if it's true
2. Power : How willing are we to fail to reject $H_{0}$, even if it's false.

## Errors

Significance and Power relate to errors.

## Errors

Significance and Power relate to errors.

1. Type 1 error: "false positive" (Significance)

## Errors

Significance and Power relate to errors.

1. Type 1 error: "false positive" (Significance)
2. Type 2 error: "false negative" (Power)

Errors in the Judicial System

Errors in the Judicial System

|  | Innocent | Guilty |
| ---: | :---: | :---: |
| Guilty Verdict | ??????? | Correct |
| Not Guilty Verdict | Correct | ?????? |

Errors in the Judicial System

|  | Innocent | Guilty |
| ---: | :---: | :---: |
| Guilty Verdict | Type 1 | Correct |
| Not Guilty Verdict | Correct | ?????? |

Errors in the Judicial System

|  | Innocent | Guilty |
| ---: | :---: | :---: |
| Guilty Verdict | Type 1 | Correct |
| Not Guilty Verdict | Correct | Type 2 |

## Back to our experiment (flipping a coin)

Our hypotheses:

## Back to our experiment (flipping a coin)

Our hypotheses:

1. $H_{0}$ the coin is fair ( $p=0.5$ that it lands Heads)

## Back to our experiment (flipping a coin)

Our hypotheses:

1. $H_{0}$ the coin is fair ( $p=0.5$ that it lands Heads)
2. $H_{1}$ the coin is not fair $(p \neq 0.5)$

## Back to our experiment (flipping a coin)

mu, sigma $=$ normal_approx (1000, 0.5)
err $=0.05$ \# Our comfort with a type 1 error: 5\%
lower, upper = norm_two_sided_bounds((1 - err), mu, sigma)

## Back to our experiment (flipping a coin)

The result, with $95 \%$ probability:

## Back to our experiment (flipping a coin)

The result, with $95 \%$ probability:

1. Lower $\approx 469$ result in heads

## Back to our experiment (flipping a coin)

The result, with $95 \%$ probability:

1. Lower $\approx 469$ result in heads
2. Upper $\approx 531$ result in heads

## Back to our experiment (flipping a coin)

The result, with $95 \%$ probability:

1. Lower $\approx 469$ result in heads
2. Upper $\approx 531$ result in heads
3. What would we expect if the coin was fair?

## Interpreting the results

Assuming the coin is fair

## Interpreting the results

Assuming the coin is fair

1. Just a $5 \%$ chance that the number of heads we'd see lies outside this range

## Interpreting the results

Assuming the coin is fair

1. Just a $5 \%$ chance that the number of heads we'd see lies outside this range
2. Have we proven anything?

## Interpreting the results

Assuming the coin is fair

1. Just a $5 \%$ chance that the number of heads we'd see lies outside this range
2. Have we proven anything?
3. Are you convinced?

## Interpreting the results

Assuming the coin is fair

1. Just a $5 \%$ chance that the number of heads we'd see lies outside this range
2. Have we proven anything?
3. Are you convinced?
4. If you're wrong you lose a limb, are you convinced now?

## Interpreting the results

But we got to choose the significance! How seriously should we take these results?

## Interpreting the results

But we got to choose the significance! How seriously should we take these results?

1. It is important that you communicate why you feel these results are valid.

## Interpreting the results

But we got to choose the significance! How seriously should we take these results?

1. It is important that you communicate why you feel these results are valid.
2. It is very easy to lie with statistics:

## Interpreting the results

But we got to choose the significance! How seriously should we take these results?

1. It is important that you communicate why you feel these results are valid.
2. It is very easy to lie with statistics:
2.1 Imagine if $H_{0}$ was not in the $95 \%$ range, but in the $96 \%$ range

## Interpreting the results

But we got to choose the significance! How seriously should we take these results?

1. It is important that you communicate why you feel these results are valid.
2. It is very easy to lie with statistics:
2.1 Imagine if $H_{0}$ was not in the $95 \%$ range, but in the $96 \%$ range
2.2 Why is $5 \%$ special?

## p-Values

We computed bounds based on some chosen probability, $p$-values flips this around:

## p-Values

We computed bounds based on some chosen probability, $p$-values flips this around:

1. We assume $H_{0}$ is true.

## p-Values

We computed bounds based on some chosen probability, $p$-values flips this around:

1. We assume $H_{0}$ is true.
2. We compute the probability that we would see a value at least as extreme as our actually observed value.

## p-Values

Let's say we flipped a coin 1000 times (instead of having a distribution of such experiments)

## p-Values

Let's say we flipped a coin 1000 times (instead of having a distribution of such experiments)

1. We observe 530 heads, this would give us a p-value of $6.2 \%$

## p-Values

Let's say we flipped a coin 1000 times (instead of having a distribution of such experiments)

1. We observe 530 heads, this would give us a p-value of $6.2 \%$
2. We observe 532 heads, this would give us a p-value of $4.6 \%$

## p-Values

Let's say we flipped a coin 1000 times (instead of having a distribution of such experiments)

1. We observe 530 heads, this would give us a p-value of $6.2 \%$
2. We observe 532 heads, this would give us a p-value of $4.6 \%$
3. (The function for computing the p -values is in the notebook file)

## Recap on the general problem

Many Machine Learning problems take the following form:

$$
\operatorname{minimize}_{\theta} \sum_{i=1}^{m} l\left(h_{\theta}\left(x^{(i)}\right), y^{(i)}\right)
$$

## Recap on the general problem

Many Machine Learning problems take the following form:

$$
\operatorname{minimize}_{\theta} \sum_{i=1}^{m} l\left(h_{\theta}\left(x^{(i)}\right), y^{(i)}\right)
$$

We've now looked at some $l$ s and an $h$.

## Previously, on...

Hypothesis function

## Previously, on...

Hypothesis function

1. We looked at a linear regression

## Previously, on...

Hypothesis function

1. We looked at a linear regression
2. We 'fit' this linear regression to our dataset

## Previously, on...

Hypothesis function

1. We looked at a linear regression
2. We 'fit' this linear regression to our dataset
3. If our data is actually linear, we also get predictive power

## A wild $h$ appears

Linear Regressions aren't the only possible hypothesis function! We've also got:

## A wild $h$ appears

Linear Regressions aren't the only possible hypothesis function! We've also got:

1. Decision Trees : 20-questions, the ML technique

## A wild $h$ appears

Linear Regressions aren't the only possible hypothesis function! We've also got:

1. Decision Trees : 20-questions, the ML technique
2. Polynomials : For when a straight line isn't cutting it

## A wild $h$ appears

Linear Regressions aren't the only possible hypothesis function! We've also got:

1. Decision Trees : 20-questions, the ML technique
2. Polynomials : For when a straight line isn't cutting it
3. Neural networks : What if we misunderstood neurons and made it a program?

## A wild $h$ appears

Linear Regressions aren't the only possible hypothesis function! We've also got:

1. Decision Trees : 20-questions, the ML technique
2. Polynomials : For when a straight line isn't cutting it
3. Neural networks : What if we misunderstood neurons and made it a program?
4. Arbitrary Programs: What is computers wrote the programs?

## Do you realize?

A learning problem is said to be realizable if the true function exists within the learning problem's hypothesis space

## Do you realize?

A learning problem is said to be realizable if the true function exists within the learning problem's hypothesis space

1. This means that the more expressive the hypothesis space (polynomials vs straight lines) the more likely that the problem is realizable.

## Do you realize?

A learning problem is said to be realizable if the true function exists within the learning problem's hypothesis space

1. This means that the more expressive the hypothesis space (polynomials vs straight lines) the more likely that the problem is realizable.
2. What's the downside?

## Do you realize?

A learning problem is said to be realizable if the true function exists within the learning problem's hypothesis space

1. This means that the more expressive the hypothesis space (polynomials vs straight lines) the more likely that the problem is realizable.
2. What's the downside?
3. Occam's ${ }^{1}$ Razor is a data-scientist's best friend
[^0]Decision Trees

We can view our tagged dataset (values of $(x, \operatorname{tag})$ ), as standing in for values of $(x, f(x))$.

## Decision Trees

We can view our tagged dataset (values of $(x, \operatorname{tag})$ ), as standing in for values of $(x, f(x))$.

1. As with the linear regression the goal is to find an $h$ that approximates $f$.

## Decision Trees

We can view our tagged dataset (values of $(x, \operatorname{tag})$ ), as standing in for values of $(x, f(x))$.

1. As with the linear regression the goal is to find an $h$ that approximates $f$.
2. But instead of a regression, we want a tree of decisions.

## Decision Trees

We can view our tagged dataset (values of $(x, \operatorname{tag})$ ), as standing in for values of $(x, f(x))$.

1. As with the linear regression the goal is to find an $h$ that approximates $f$.
2. But instead of a regression, we want a tree of decisions.
3. What's a decision?

## Decisions! Decisions!

Each decision has two parts:

## Decisions! Decisions!

Each decision has two parts:

1. Input : An object ${ }^{2}$ event/situation, that is described by a set of attributes (or features)
[^1]
## Decisions! Decisions!

Each decision has two parts:

1. Input : An object ${ }^{2}$ event/situation, that is described by a set of attributes (or features)
2. Output: A prediction of the 'value' based on the input
[^2]
## Decisions! Decisions!

Each decision has two parts:

1. Input : An object ${ }^{2}$ event/situation, that is described by a set of attributes (or features)
2. Output: A prediction of the 'value' based on the input
3. The boolean case (yes/no) is easy to visualize, but the values do not have to be discrete.

## Consider

You are asked to identify an animal based on a set of features (number of legs, weight, number of eyes, etc.)

## Consider

You are asked to identify an animal based on a set of features (number of legs, weight, number of eyes, etc.)

1. The challenge is that the order of questions can matter!

## Consider

You are asked to identify an animal based on a set of features (number of legs, weight, number of eyes, etc.)

1. The challenge is that the order of questions can matter!
2. You'll want the 'most significant' question first.

## Consider

You are asked to identify an animal based on a set of features (number of legs, weight, number of eyes, etc.)

1. The challenge is that the order of questions can matter!
2. You'll want the 'most significant' question first.
3. Unfortunately, it can be very expensive(!!) to find the most significant question.

A tiny bit more formally:

A decision tree has two types of nodes:

## A tiny bit more formally:

A decision tree has two types of nodes:

1. Decision nodes: Specifies a test on some attribute

## A tiny bit more formally:

A decision tree has two types of nodes:

1. Decision nodes: Specifies a test on some attribute
2. Leaf node: A final classification/prediction

## Small example:

We want to determine whether someone has ever seen an episode of Sponge Bob:

## Small example:

We want to determine whether someone has ever seen an episode of Sponge Bob:

1. Are they older than 70: no.

## Small example:

We want to determine whether someone has ever seen an episode of Sponge Bob:

1. Are they older than 70: no.
2. Are they older then 40: if yes...

## Small example:

We want to determine whether someone has ever seen an episode of Sponge Bob:

1. Are they older than 70: no.
2. Are they older then 40: if yes...
2.1 Do they have kids: if yes, yes.

## Small example:

We want to determine whether someone has ever seen an episode of Sponge Bob:

1. Are they older than 70: no.
2. Are they older then 40: if yes...
2.1 Do they have kids: if yes, yes.
2.2 no.

## Small example:

We want to determine whether someone has ever seen an episode of Sponge Bob:

1. Are they older than 70: no.
2. Are they older then 40: if yes...
2.1 Do they have kids: if yes, yes.
2.2 no.
3. Are they older than 4: yes.

## Small example:

We want to determine whether someone has ever seen an episode of Sponge Bob:

1. Are they older than 70: no.
2. Are they older then 40: if yes...
2.1 Do they have kids: if yes, yes.
2.2 no.
3. Are they older than 4: yes.
4. Do they have older siblings: yes.

## Small example:

We want to determine whether someone has ever seen an episode of Sponge Bob:

1. Are they older than 70: no.
2. Are they older then 40: if yes...
2.1 Do they have kids: if yes, yes.
2.2 no.
3. Are they older than 4: yes.
4. Do they have older siblings: yes.
5. no.

Oof

Even for such a small example, it starts getting unwieldy.

Oof

Even for such a small example, it starts getting unwieldy. 1. Luckily, libraries will be able to display trees nicely

Oof

Even for such a small example, it starts getting unwieldy.

1. Luckily, libraries will be able to display trees nicely
2. For many trees it's not necessarily true that each 'decision', will have a meaningful-in-English question associated with it.

## A prettier example

Should we wait for a table?


## How many are there?

Decision Trees can encode arbitrary boolean functions.

## How many are there?

Decision Trees can encode arbitrary boolean functions.

1. Each attribute can be $0 / 1$

## How many are there?

Decision Trees can encode arbitrary boolean functions.

1. Each attribute can be $0 / 1$
1.1 So our input space is $2^{N}$

## How many are there?

Decision Trees can encode arbitrary boolean functions.

1. Each attribute can be $0 / 1$
1.1 So our input space is $2^{N}$
2. Each decision value can be $0 / 1$, for each possible combination of features!

## How many are there?

Decision Trees can encode arbitrary boolean functions.

1. Each attribute can be $0 / 1$
1.1 So our input space is $2^{N}$
2. Each decision value can be $0 / 1$, for each possible combination of features!
2.1 So our hypothesis space is $2^{2^{N}}$

## Basic Algorithm

The goal is to find a small tree that correctly predicts the training samples

## Basic Algorithm

The goal is to find a small tree that correctly predicts the training samples

1. Choose the "most significant" attribute

## Basic Algorithm

The goal is to find a small tree that correctly predicts the training samples

1. Choose the "most significant" attribute
2. Once you make a choice for "most significant", you don't backtrack (greedy)

## Basic Algorithm

The goal is to find a small tree that correctly predicts the training samples

1. Choose the "most significant" attribute
2. Once you make a choice for "most significant", you don't backtrack (greedy)
3. Now you've split your dataset, repeat the process for each subset.

## Significant?

How do we pick the "most significant"?

## Significant?

How do we pick the "most significant"?

1. We can't always :(

## Significant?

How do we pick the "most significant"?

1. We can't always :(
2. We want to try and maximize information gain

## Significant?

How do we pick the "most significant"?

1. We can't always :(
2. We want to try and maximize information gain
3. For this class: let the libraries do the work for you.

Thanks for your time!
:)


[^0]:    ${ }^{1}$ Also written as 'Ockham' or 'Ocham'

[^1]:    ${ }^{2}$ not in the OO sense

[^2]:    ${ }^{2}$ not in the OO sense

