INTRODUCTION TO
DATA SCIENCE

JMCT AND JOHN P DICKERSON

Lecture #17 — 06/29/2021

COMPUTER SCIENCE

UNIVERSITY OF MARYLAND

CMSC320

2:00pm - 3:25pm h

Weekdays
(... or anytime on the Internet)

TODAY'S LECTURE

Exploratory Analysis, Insight &
Data Data analysis hypothesis pog"Cy

collection processing & testing, &

Data viz ML Decision

RECALL: EXPLICIT EXAMPLE OF
STUFF FROM NLP CLASS

Saving the boring stuff:

!’le,y:hates_cats = _01’ !”xl,yzlikes_cats = +25 Document 1: | like cats

!'/xz,y:hates_cats =+ 1 . 9; .‘”xz’y:ﬁkes_cats — +O' 5 Document 2: | hate cats

We want to predict the class of each document:

y = arg max 07f(x, y)
y

Document 1: arg m ax{ "’l x1,y:hatels_cats’ "’l x1,y=likes_cats 22222272

Document 2: argmax{ W, _..cs cass Waymikes cats § 22222222

ED)

MACHINE LEARNING

We used a linear model to classify input documents
The model parameters 6 were given to us a priori

* (We created them by hand.)

* Typically, we cannot specify a model by hand.

Supervised machine learning provides a way to automatically
infer the predictive model from labeled data.

Training Data ML Algorithm Predictions

(x®, yw)
(x@, y©@) ‘ Hypothesis function ‘ New example x
(x®, y©®) y® = h(x®) y = h(X)

TERMINOLOGY

Input features: ¥ € R" i =1,...,m

xOT = | 1

:
0
1

|

O | F If

x@T = | 1

Outputs: y E y 1 =1,.
y® e {0, 1} ={ hates_cats, Ilkes_cats }

Model parameters:) c [R™
7= 0 -1 1 -01 O

TERMINOLOGY

Hypothesis function: h9: R™ — y,

E.g., linear classifiers predict outputs using{:n

hg(x) =01z = Zﬁj T,
j=1

Loss function: £: Y x5 — R
* Measures difference between a prediction and the true output

* E.g., squared loss: f(g, y) — @ o y)2

* E.g., hinge loss: g(y) — maX(Oj 1 —¢- y)
\

Output t = {-1,+1} based Classifier score y
on -1 or +1 class label

THE CANONICAL MACHINE
LEARNING PROBLEM

At the end of the day, we want to learn a hypothesis function
that predicts the actual outputs well.

Choose the parameterization
that minimizes loss!

\ m . .
minimize, Z {(hg(z'V)),y'V))
i=1

\

Given an hypothesis
function and loss function

HOW DO | MACHINE LEARN?

1. What is the hypothesis function?

* Domain knowledge and EDA can help here.
2. What is the loss function?

* We've discussed two already: squared and absolute.
3. How do we solve the optimization problem?

* (We'll cover gradient descent and stochastic gradient
descent in class, but if you are interested, take CMSC422!)

First GIS result for “optimization”

-

L L

———

=

-
-
-—

ASIDE: LOSS FUNCTIONS

QUICK ASIDE ABOUT
LOSS FUNCTIONS

Say we’re back to classifying documents into:

* hates_cats, translated to labely = -1

* likes_cats, translated to label y = +1

We want some parameter vector @ such that:

« y,, >0if the feature vector x is of class likes_cat; (y = +1)

« Y, <0ifx'slabelisy =-1

We want a hyperplane that separates positive examples
from negative examples.

Why not use 0/1 loss; that is, the number of wrong answers?

: (2) . (2)\ « }
argmgnZl[y (0, 2\") <0

72=1

MINIMIZING O/1 LOSS IN A
SINGLE DIMENSION

Z 1 [y(i) . (9,3:(“')) <0
=1

loss

0

Each time we change 6 such that the example is right
(wrong) the loss will increase (decrease)

MINIMIZING 0/1 LOSS OVER ALL
S,

argmle{ QZE%))_O}

72— 1

This is NP-hard.

* Small changes in any 6 can have large changes in the loss
(the change isn’'t continuous)

* There can be many local minima

* At any give point, we don’t have much information to direct us
towards any minima

Maybe we should consider other loss functions.

DESIRABLE PROPERTIES

loss

* Continuous so we get a local indication of the direction of
minimization

* Only one (i.e., global) minimum

CONVEX FUNCTIONS

“A function is convex if the line segment between any two
points on its graph lies above it.”

Formally, given function f and two points X, y:
FOX+ (1= Ny) SAf(x)+ (1= A\ f(y) YAe[o,1

SURROGATE LOSS
FUNCTIONS

For many applications, we really would like to minimize the
0/1 loss

A surrogate loss function is a loss function that provides an
upper bound on the actual loss function (in this case, 0/1)

We’d like to identify convex surrogate loss functions to make
them easier to minimize

Key to a loss function is how it scores the difference
between the actual label y and the predicted label y’

SURROGATE LOSS
FUNCTIONS

0/1 loss: E(?:l, y) =1 [y’g S 0

Want: a function that is continuous and convex and upper
bounds the 0/1 loss.

+ Hinge: £(y, y) = max(0,1 — yy)

* Exponential: 6(?3’ y) — e_yy

e Squared: E(Q, y) — (y o Q)Q

SURROGATE LOSS FUNCTIONS
0/1 loss: g(:g? y) —1 [y:& S 0 A
e £(7,y) = max(0,1 — yy)
Exponential: f(?;j y) — e_yy
Squared loss: f(@j y) — (y — :(})2

Surrogate loss functions

8 W o

B squared
g hing

B =xponent

g N
: \\ b/ (Recall: y in {-1, +1})
0 ' '

-2 -1 0 1 2

SOME ML ALGORITHMS

Hypothesis

Loss Function

Optimization

Function

Approach

Least squares Linear Squared Analytical or GD
Linear regression | Linear Squared Analytical or GD
Support Vector Linear, Kernel Hinge Analytical or GD
Machine (SVM)
Perceptron Linear Perceptron Perceptron
criterion (~Hinge) | algorithm, others
Neural Networks | Composed Squared, Hinge, | SGD
nonlinear Cross Ent, ...
Decision Trees Hierarchical Many Greedy
halfplanes
Naive Bayes Linear Joint probability | #SAT

Follow the white rabbit:

https://en.wikipedia.org/wiki/List_of_machine_learning_concepts

RECALL: LINEAR REGRESSION

Listing

Scatterplot of Listing vs | ncomePC

900000

800000

700000+

600000

500000+

400000

300000

200000

100000+

°
e &

I
15000

I
17500

I
20000

T T
22500 25000
IncomePC

I
27500

I
30000

I
32500

LINEAR REGRESSION AS
MACHINE LEARNING

Let’s consider linear regression that minimizes the sum of
squared error, i.e., least squares ...

1. Hypothesis function: ????????
* Linear hypothesis function hg (:U) = QTI

2. Loss function: ?2?27???2?2??

* Squared errorloss £(1,y) = %(y _ y)z

3. Optimization problem: ????????

minimize, Z(QTQ;(??) _ y(’i))2
i=1

LINEAR REGRESSION AS
MACHINE LEARNING

Each row is a feature vector paired

Rewrite inputs: with a label for a single input m labeled inputs
~ (m(l))T‘;/ \(y(l) - [
K (33(2.))"? e Rm*", Yy = y(.z) € R™
(zm))T_ Ly

Rewrite optimization problem:

1
minimize, 5 | X0 — y|3

*Recall: |zl; =2"2=3" 27

GRADIENTS

In Lecture 11, we showed that the mean is the point that
minimizes the residual sum of squares:

* Solved minimization by finding point where derivative is zero
* (Convex functions like RSS ¥ single global minimum.)

The gradient is the multivariate generalization of a derivative.

For a function f; R™ — R, the gradient is a vector of all n

partial derivatives: -9 f(9)_
0,
Vof(0) = : c R
of (6)
00

e n—

GRADIENTS

2

15

1 . A
0.5 .
y B
0.5 o
o v
1.5

4 1.5 1 0.5 0 0.5 1 1.5 b

Gradient of f(x,y) = xe-®2+y2)

GRADIENTS

Minimizing a multivariate function involves finding a point
where the aradient is zero

Vo f(0) =0 (the vector of zeros)
Points where the gradient is zero are local minima
* If the function is convex, also a global minimum
Let’s solve the least squares problem!

We’'ll use the multivariate generallzatlons of

some concep1vgf(X9) X.TVXQf(XQ)
Vol0 — 2[5 = 2(0 —

* Gradient of squared > norm:

e Chalin rule:

2)

LEAST SQUARES

Recall the least squares optimization problem:

1
minimize, 5 | X6 — y|3

1 in rule:
2 Chain rule:
Vi 9 HX9 — @/Hz — Vo f(X0) = XTV 5, f(X0)
XT 1 2 Gradient of norm:
V xo5 X0yl = Vol0— 23 =2(6 2)

1
Vo5 | X0—yl3 = X7(X0—y)

LEAST SQUARES

Recall: points where the gradient equals zero are minima.

1
Va5 | X0 yl3 = X"(X0—y)

X (X0 —y)=0 it
XTx0—XTy=0m XTX0=XTy
(X'X) ' X X0=(XTX) ' Xy

[9 — (XTX)_lXTyJ

ML IN PYTHON

.fewm

machine learning in Python

Python has tons of hooks into a variety of machine learning
libraries. (Part of why this course is taught in Python!)

Scikit-learn is the most well-known library:

Classification (SVN, K-NN, Random Forests, ...)
Regression (SVR, Ridge, Lasso, ...)

Clustering (k-Means, spectral, mean-shift, ...)
Dimensionality reduction (PCA, matrix factorization, ...)
Model selection (grid search, cross validation, ...)

Preprocessing (cleaning, EDA, ...)

Built on the NumPy stack; plays well with Matplotlib.

LEAST SQUARES IN PYTHON

You don’t need Scikit-learn for OLS ...

params = np.linalg.solve(X.T.dot (X), X.T.dot(y))
But let’s say you did want to use it.
from sklearn import linear model

X =1

(0,01, [2,2]]
Yy = [0, 1

’

= linear_model.LinearRegression ()
Lt (X, Y)
.coef

array ([0.5, 0.5])

NEXT, OR NEXT CLASS:

(STOCHASTIC)
GRADIENT DESCENT

TODAY.
GRADIENT DESCENT

We used the gradient as a condition for optimality

It also gives the local direction of steepest increase for a
function: A

f Vo f(0)
9]_ If there is no increase,
< gradient is zero = local
minimum!
>

2

Intuitive idea: take small steps against the gradient.

Image from Zico Kolter

GRADIENT DESCENT

Algorithm for any* hypothesis function hQ: R™ — y,, loss
function/: Yx Y —» R+, step size (X :
Initialize the parameter vector:

- 0+ 0

Repeat until satisfied (e.g., exact or approximate
convergence):

 Compute gradient: (G <— ZZl ng(hg (.CU(":)), y(i))
* Update parameters: 0 — 60— oy - q

*must be reasonably well behaved

GRADIENT DESCENT

Step-size (\alpha) is an important parameter

* Too large & might oscillate around the minima
* Too small & can take a long time to converge

If there are no local minima, then the algorithm eventually
converges to the optimal solution

Very widely used in Machine Learning

EXAMPLE

Function: f(Xx,y) = x2 + 2y?

Viz,y) = [i‘;]

Let’s take a gradient step
from (-2, +1/2):

Vi(=2,1) = [’;‘]

Step in the direction (+4, -
2), scaled by step size

Repeat until no movement

GRADIENT DESCENT FOR
OLS

Algorithm for linear hypothesis function and squared error
loss function (combined to 1/2||X 60 — y||3, like before):

Initialize the parameter vector:

- 0+0

Repeat until satisfied:
* Compute gradient: g <— Xt (X9 — y)
* Update parameters:) «— () — ¢ - qg

GRADIENT DESCENT IN PURE(-
ISH) PYTHON

def grad_descent (X, y, T, alpha):
m, n = X.shape
theta = np.zeros(n)
f = np.zeros(T)
for 1 in range(T) :
f[1i] = 0.5*np.linalg.norm(X.dot (theta) - y)**2

g = X.T.dot (X.dot (theta) - y)

theta = theta - alpha¥*g
return theta, £

Implicitly using squared loss and linear hypothesis function
above; drop in your favorite gradient for kicks!

PLOTTING LOSS OVER TIME

1600 -
1400
1200 -

1000 -

Objective
o
o
o

600 -

400

200 -

0 5] 10 15 20
lteration Number

Image from Zico Kolter

ITERATIVE VS ANALYTIC
SOLUTIONS

But we already had an analytic solution! What gives?

Recall: last class we discuss 0/1 loss, and using convex
surrogate loss functions for tractability

One such function, the absolute error loss function, leads to:

™m
minimize, Z‘@T:U(i) — y'9| = minimize, | X0 —y|,
i—1

Lo

* Not differentiable! But subgradients?

e No closed form!

* SO0 you must use iterative method

LEAST ABSOLUTE
DEVIATIONS

Can solve this using gradient descent and the gradient:
— Y1I'g;
Vo [X0 —yl, = X" sign(X0 —y)
Simple to change in our Python code:

for 1 in range(T) :

f[i] = np.linalg.norm(X.dot (theta) - vy, 1)

g = X.T.dot(np.sign(X.dot (theta) - y))

theta = theta - alpha¥*g
return theta, £

BATCH VS STOCHASTIC
GRADIENT DESCENT

Batch: Compute a single gradient (vector) for the entire
dataset (as we did so far)

Repeat until convergence {

0;:=0; + a X, (¥ — ho(z?)) 2}’ (for every j).

Incremental/Stochastic:

* Do one training sample at a time, i.e., update parameters for

every sample separately
* Much faster in general, with more pathological cases

Loop {

for i=1 to m, {
8; :=8; + a (y" fr;,l[_r"”:']}.r‘j-'.:' (for every j).
}

}
From: Andrew Ng, CS229 Lecture Notes

	Slide 1
	Today’s Lecture
	Recall: Explicit example of stuff from NLP class
	Machine learning
	Terminology
	Terminology
	The canonical Machine learning problem
	How do I machine learn?
	Aside: Loss functions
	Quick aside about loss functions
	Minimizing 0/1 loss in a single dimension
	Minimizing 0/1 loss over all θ
	Desirable properties
	Convex functions
	Surrogate loss functions
	Surrogate loss functions
	Surrogate loss functions
	Some ML algorithms
	Slide 22
	Recall: Linear Regression
	Linear regression as Machine Learning
	Linear regression as Machine Learning
	Gradients
	Gradients
	Gradients
	Least squares
	Least Squares
	ML in Python
	Least Squares in Python
	Next, or Next Class: (Stochastic) Gradient Descent
	Today: Gradient Descent
	Gradient descent
	Gradient Descent
	Example
	Gradient Descent for OLS
	Gradient descent in Pure(-ish) python
	Plotting Loss over time
	Iterative vs analytic solutions
	Least Absolute Deviations
	Batch vs Stochastic Gradient Descent

