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MISSING DATA
Missing data is information that we want to know, but don’t

It can come in many forms, e.g.:

• People not answering questions on surveys

• Inaccurate recordings of the height of plants that need to be 
discarded

• Canceled runs in a driving experiment due to rain

Could also consider missing columns (no collection at all) to 
be missing data …

[JA]
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KEY QUESTION
Why is the data missing?

• What mechanism is it that contributes to, or is associated with, 
the probability of a data point being absent?

• Can it be explained by our observed data or not?

The answers drastically affect what we can ultimately do to 
compensate for the missing-ness

[JA]
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COMPLETE CASE ANALYSIS
Delete all tuples with any missing values at all, so you are left only 
with observations with all variables observed

Default behavior for libraries for analysis (e.g., regression)

• We’ll talk about this much more during the Stats/ML lectures

This is the simplest way to handle missing data. In some cases, will 
work fine; in others, ?????????????:

• Loss of sample will lead to variance larger than reflected by the size of 
your data

• May bias your sample

# Clean out rows with nil values
df = df.dropna()

[JA]
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EXAMPLE

Dataset: Body fat percentage in men, and the circumference 
of various body parts [Penrose et al., 1985]

Question: Does the circumference of certain body parts 
predict body fat percentage?

Given complete data, how would you answer 
this ?????????

One way to answer is regression analysis:

• One or more independent variables ("predictors”)

• One dependent variables (“outcome”)

What is the relationship between the predictors and the 
outcome?

What is the conditional expectation of the dependent 
variable given fixed values for the dependent variables?
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LINEAR REGRESSION

Assumption: relationship between variables is linear:

• (We’ll relax linearity, study in more depth later.)

Dependent 
Variable
(e.g., ????????)

Independent Variable(s) 
(e.g., ?????????)

Population 
Y-Intercept

Population 
Slope

Random 
Error
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SINGLE IMPUTATION
Mean imputation: imputing the average from observed cases for 
all missing values of a variable

Hot-deck imputation: imputing a value from another subject, or 
“donor,” that is most like the subject in terms of observed 
variables

• Last observation carried forward (LOCF): order the dataset 
somehow and then fill in a missing value with its neighbor

Cold-deck imputation: bring in other datasets

Old and busted:

• All fundamentally impose too much precision.

• Have uncertainty over what unobserved values actually are

• Developed before cheap computation
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MULTIPLE IMPUTATION
Developed to deal with noise during imputation

• Impute once  treats imputed value as observed

We have uncertainty over what the observed value would 
have been

Multiple imputation: generate several random values for each 
missing data point during imputation
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IMPUTATION PROCESS
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Incomplete data Pooled results

s1

s2

sN

a1

a2

aN

Impute N times Analysis performed 
on each imputed set



TINY EXAMPLE

X Y

32 2

43 ?

56 6

25 ?

84 5
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Independent variable: X
Dependent variable: Y
We assume Y has a linear relationship with X



LET’S IMPUTE SOME 
DATA!
Use a predictive distribution of the missing values:

• Given the observed values, make random draws of the 
observed values and fill them in.

• Do this N times and make N imputed datasets
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X Y

32 2

43 5.5

56 6

25 8

84 5

X Y

32 2

43 7.2

56 6

25 1.1

84 5

For very large values of N=2 …



INFERENCE WITH 
MULTIPLE IMPUTATION
Now that we have our imputed data sets, how do we make 
use of them?       ???????????

• Analyze each of the separately 
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X Y

32 2

43 5.5

56 6

25 8

84 5

X Y

32 2

43 7.2

56 6

25 1.1

84 5

Slope 4.932

Standard error 4.287

Slope -0.8245

Standard error 6.1845

Y X
i i i
    

0 1
Y X
i i i
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0 1



POOLING ANALYSES
Pooled slope estimate is the average of the N imputed 
estimates

Our example, β1p = (4.932-.8245) x 0.5 = 2.0538

The pooled slope variance is given by 

Where Zi is the standard error of the imputed slopes

Our example: (4.287 + 6.1845)/2 + (3/2)*(16.569) = 30.08925

Standard error: take the square root, and we get 5.485
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BAYESIAN IMPUTATION

Establish a prior distribution:

• Some distribution of parameters of interest θ before 
considering the data, P(θ)

• We want to estimate θ

Given θ, can establish a distribution P(Xobs|θ)

Use Bayes Theorem to establish P(θ|Xobs) …

• Make random draws for θ

• Use these draws to make predictions of Ymiss
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HOW BIG SHOULD N BE?
Number of imputations N depends on:

• Size of dataset

• Amount of missing data in the dataset

Some previous research indicated that a small N is sufficient 
for efficiency of the estimates, based on:

• (1 + )-1

• N is the number of imputations and λ is the fraction of missing 
information for the term being estimated [Schaffer 1999]

More recent research claims that a good N is actually higher in 
order to achieve higher power [Graham et al. 2007]
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MORE ADVANCED METHODS
Interested?  Further reading:

• Regression-based MI methods

• Multiple Imputation Chained Equations (MICE) or Fully 
Conditional Specification (FCS)

• Readable summary from JHU School of Public Health: 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3074241/

• Markov Chain Monte Carlo (MCMC)

• We’ll cover this a bit, but also check out CMSC422!
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