Data Science

CMSC 320

June $3^{\text {rd }}, 2021$

This Lecture

Getting some data.

Data!

The reading teased the notion of 4 'kinds' of data (in roughly two 'types'):

Data!

The reading teased the notion of 4 'kinds' of data (in roughly two 'types'):

■ Nominal (Categorical)

Data!

The reading teased the notion of 4 'kinds' of data (in roughly two 'types'):

■ Nominal (Categorical)

- Ordinal (Categorical)

Data!

The reading teased the notion of 4 'kinds' of data (in roughly two 'types'):

■ Nominal (Categorical)

- Ordinal (Categorical)
- Interval (Numerical)

Data!

The reading teased the notion of 4 'kinds' of data (in roughly two 'types'):

■ Nominal (Categorical)

- Ordinal (Categorical)
- Interval (Numerical)
- Ratio (Numerical)

Categorical Data: Nominal

Categorical Data: Nominal

■ Think 'finite set'

Categorical Data: Nominal

■ Think 'finite set'

- Marital status, soda flavor, etc.

Categorical Data: Nominal

- Think 'finite set'
- Marital status, soda flavor, etc.
- Comparison is difficult and nonsensical

Categorical Data: Ordinal

Categorical Data: Ordinal

■ Like Nominal data, Ordinal data describes classes or states of things...

Categorical Data: Ordinal

■ Like Nominal data, Ordinal data describes classes or states of things...
■ But we can provide an order

Categorical Data: Ordinal

- Like Nominal data, Ordinal data describes classes or states of things...
- But we can provide an order
- The lecturer of this class is \{boring, neutral, exciting\}

Categorical Data: Ordinal

- Like Nominal data, Ordinal data describes classes or states of things...

■ But we can provide an order

- The lecturer of this class is \{boring, neutral, exciting\}

■ We have an order but not a mathematical way to measure distance

Numerical Data: Interval

Numerical Data: Interval

- Think: Dates, year in school (i.e. grade level), temperature.

Numerical Data: Interval

- Think: Dates, year in school (i.e. grade level), temperature.
- We have ordering and distance.

Numerical Data: Interval

- Think: Dates, year in school (i.e. grade level), temperature.

■ We have ordering and distance.
■ What don't we have?

Numerical Data: Ratio

Numerical Data: Ratio

- Everything Interval has, but with a meaningful zero

Numerical Data: Ratio

- Everything Interval has, but with a meaningful zero
- Ratios are meaningful (hence the name)

Numerical Data: Ratio

- Everything Interval has, but with a meaningful zero
- Ratios are meaningful (hence the name)
- Money, distance, volume, etc.

From data to data representation

From data to data representation

Data structures are important!

From data to data representation

Data structures are important! They guide you by limiting the number of appropriate operations

From data to data representation

Data structures are important! They guide you by limiting the number of appropriate operations

■ What are the appropriate operations for an array?

From data to data representation

Data structures are important! They guide you by limiting the number of appropriate operations

- What are the appropriate operations for an array?

■ Index, slice, map, reduce, etc.

From data to data representation

Data structures are important! They guide you by limiting the number of appropriate operations

- What are the appropriate operations for an array?

■ Index, slice, map, reduce, etc.

- What dataset would be appropriate to represent as an array?

From data to data representation

Data structures are important! They guide you by limiting the number of appropriate operations

- What are the appropriate operations for an array?

■ Index, slice, map, reduce, etc.

- What dataset would be appropriate to represent as an array?

■ In what ways could we combine two arrays?

From data to data representation

From data to data representation

What about multi-dimensional arrays?

From data to data representation

From data to data representation

What about \mathbb{N}-dimensional arrays (i.e. higher-dimensional matrices)

From data to data representation

What about \mathbb{N}-dimensional arrays (i.e. higher-dimensional matrices)

- This is where Linear Algebra starts to come in handy!

From data to data representation

From data to data representation

What about...

From data to data representation

What about...
■ Sets?

From data to data representation

What about...
■ Sets?
■ Maps (a.k.a Dictionaries)?

From data to data representation

What about...
■ Sets?
■ Maps (a.k.a Dictionaries)?
■ Tables?

From data to data representation

What about...
■ Sets?
■ Maps (a.k.a Dictionaries)?
■ Tables?

- Trees?

From data to data representation

What about...
■ Sets?

- Maps (a.k.a Dictionaries)?

■ Tables?

- Trees?
- Graphs?

Let's get some data!

Let's get some data!

To the REPL!

Any Questions?

Thanks for your time!

