
INTRODUCTION TO
DATA SCIENCE
JOSÉ MANUEL CALDERÓN TRILLA

(SLIDES BY JOHN P. DICKERSON)

Lecture #2 – 06/02/2021

CMSC320
Weekdays
2:00pm – 3:25pm
(… or anytime on the Internet)

ANNOUNCEMENTS
Register on Discord:

• some have registered already

• The rest have not

If you were on Discord, you’d know …

• Project 0 is out! It is “due” Friday evening.

• Link: https://github.com/cmsc320/summer202/tree/main/project0

We’ve also linked some reading for the week!

• First quiz will be due Monday at noon.

• Quiz will go up Friday

2

https://github.com/cmsc320/fall2020/tree/master/project0
https://github.com/cmsc320/fall2020/tree/master/project0
https://github.com/cmsc320/summer2021/tree/main/project0

UP NEXT …

SCRAPING DATA WITH PYTHON

3

THE DATA LIFECYCLE

4

Data
collection

Data
processing

Exploratory
analysis

&
Data viz

Analysis,
hypothesis
testing, &

ML

Insight &
Policy

Decision

(THE REST OF) TODAY’S
LECTURE

5

Data
collection

Data
processing

Exploratory
analysis

&
Data viz

Analysis,
hypothesis
testing, &

ML

Insight &
Policy

Decision

BUT FIRST, SNAKES!

Python is an interpreted, dynamically-typed, high-level,
garbage-collected, object-oriented-functional-imperative,
and widely used scripting language.

• Interpreted: instructions executed without being compiled
into (virtual) machine instructions*

• Dynamically-typed: verifies type safety at runtime

• High-level: abstracted away from the raw metal and kernel

• Garbage-collected: memory management is automated

• OOFI: you can do bits of OO, F, and I programming

Not the point of this class!

• Python is fast (developer time), intuitive, and used in
industry!

6

*you can compile Python source, but it’s not required

THE ZEN OF PYTHON
• Beautiful is better than ugly.

• Explicit is better than implicit.

• Simple is better than complex.

• Complex is better than complicated.

• Flat is better than nested.

• Sparse is better than dense.

• Readability counts.

• Special cases aren't special enough to break the rules …

• … although practicality beats purity.

• Errors should never pass silently …

• … unless explicitly silenced.

7

Thanks: SDSMT ACM/LUG

LITERATE
PROGRAMMING
Literate code contains in one document:

• the source code;

• text explanation of the code; and

• the end result of running the code.

Basic idea: present code in the order that logic and flow of
human thoughts demand, not the machine-needed ordering

• Necessary for data science!

• Many choices made need textual explanation, ditto results.

Stuff you’ll be using in Project 0 (and beyond)!

8

JUPYTER PROJECT
Started as iPython Notebooks, a web-based frontend to the
iPython Shell

• Notebook functionality separated out a few years ago
• Now supports over 40 languages/kernels
• Notebooks can be shared easily
• Can leverage big data tools like Spark

Apache Zeppelin:

• https://www.linkedin.com/pulse/comprehensive-comparison-ju
pyter-vs-zeppelin-hoc-q-phan-mba-

Several others including RStudio (specific to R)

9

https://www.linkedin.com/pulse/comprehensive-comparison-jupyter-vs-zeppelin-hoc-q-phan-mba-
https://www.linkedin.com/pulse/comprehensive-comparison-jupyter-vs-zeppelin-hoc-q-phan-mba-

10-MINUTE PYTHON
PRIMER
Define a function:

Python is whitespace-delimited

Define a function that returns a tuple:

10

def my_func(x, y):
if x > y:

return x
else:

return y

def my_func(x, y):
return (x-1, y+2)

(a, b) = my_func(1, 2)

a = 0; b = 4

USEFUL BUILT-IN FUNCTIONS:
COUNTING AND ITERATING

len: returns the number of items of an enumerable object

range: returns an iterable object

enumerate: returns iterable tuple (index, element) of a list

https://docs.python.org/3/library/functions.html

len([‘c’, ‘m’, ‘s’, ‘c’, 3, 2, 0])

7

list(range(10))

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

enumerate([“311”, “320”, “330”])

[(0, “311”), (1, “320”), (2, “330”)]

11

USEFUL BUILT-IN FUNCTIONS:
MAP AND FILTER
map: apply a function to a sequence or iterable

filter: returns a list* of elements for which a predicate is true

We’ll go over in much greater depth with pandas/numpy.

12

arr = [1, 2, 3, 4, 5]
map(lambda x: x**2, arr)

[1, 4, 9, 16, 25]

arr = [1, 2, 3, 4, 5, 6, 7]
filter(lambda x: x % 2 == 0, arr)

[2, 4, 6]

*in Python 3, returns Iterable

PYTHONIC
PROGRAMMING
Basic iteration over an array in Java:

Direct translation into Python:

A more “Pythonic” way of iterating:

idx = 0
while idx < len(arr):

print(arr[idx]); idx += 1

int[] arr = new int[10];
for(int idx=0; idx<arr.length; ++idx) {

System.out.println(arr[idx]);
}

for element in arr:
print(element)

13

LIST COMPREHENSIONS
Construct sets like a mathematician!

• P = { 1, 2, 4, 8, 16, …, 216 }

• E = { x | x in ℕ and x is odd and x < 1000 }

Construct lists like a mathematician who codes!

Very similar to map, but:

• You’ll see these way more than map in the wild

• Many people consider map/filter not “pythonic”

• They can perform differently (map is “lazier”)

14

P = [2**x for x in range(17)]

E = [x for x in range(1000) if x % 2 != 0]

EXCEPTIONS
Syntactically correct statement throws an exception:

• tweepy (Python Twitter API) returns “Rate limit exceeded”

• sqlite (a file-based database) returns IntegrityError

15

print('Python', python_version())

try:
cause_a_NameError

except NameError as err:
print(err, '-> some extra text')

PYTHON 2 VS 3
Python 3 is intentionally backwards incompatible

• (But not that incompatible)

Biggest changes that matter for us:

• print “statement”  print(“function”)

• 1/2 = 0  1/2 = 0.5 and 1//2 = 0

• ASCII str default  default Unicode

Namespace ambiguity fixed:

i = 1

[i for i in range(5)]

print(i) # ????????

16

TO ANY CURMUDGEONS …
If you’re going to use Python 2 anyway, use the _future_
module:

• Python 3 introduces features that will throw runtime errors in
Python 2 (e.g., with statements)

• _future_ module incrementally brings 3 functionality into 2

• https://docs.python.org/2/library/__future__.html

from _future_ import division

from _future_ import print_function

from _future_ import please_just_use_python_3

17

SO, HOW DOES IMPORT WORK?
Python code is stored in module – simply put, a file full of
Python code

A package is a directory (tree) full of modules that also
contains a file called __init.py__

• Packages let you structure Python’s module namespace

• E.g., X.Y is a submodule Y in a package named X

For one module to gain access to code in another module, it
must import it

18

EXAMPLE

19

Load (sub)module sound.effects.echo
import sound.effects.echo
Must use full name to reference echo functions
sound.effects.echo.echofilter(input, output, delay=0.7)

https://docs.python.org/2/tutorial/modules.html

EXAMPLE

20

Load (sub)module sound.effects.echo
import sound.effects.echo
Must use full name to reference echo functions
sound.effects.echo.echofilter(input, output, delay=0.7)

https://docs.python.org/2/tutorial/modules.html

Load (sub)module sound.effects.echo
from sound.effects import echo
No longer need the package prefix for functions in echo
echo.echofilter(input, output, delay=0.7)

Load a specific function directly
from sound.effects.echo import echofilter
Can now use that function with no prefix
echofilter(input, output, delay=0.7)

PYTHON VS R (FOR DATA
SCIENTISTS)
There is no right answer here!

• Python is a “full”
programming language –
easier to integrate with
systems in the field

• R has a more mature set of
pure stats libraries …

• … but Python is catching up
quickly …

• … and is already ahead
specifically for ML.

You will see Python more in the
tech industry.

21

EXTRA RESOURCES
Plenty of tutorials on the web:

• https://www.learnpython.org/

Work through Project 0, which will take you through some
baby steps with Python and the Pandas library:

• (We’ll also post some more readings soon.)

Come (virtually!) hang out at office hours:

• All office hours will be on the website/Piazza by early next week.

• Will have coverage MTWThF.

22

23

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

