
MapReduce: Simplified Data Processing
on Large Clusters

by Jeffrey Dean and Sanjay Ghemawat

1 Introduction
Prior to our development of MapReduce, the authors and many others
at Google implemented hundreds of special-purpose computations that
process large amounts of raw data, such as crawled documents, Web
request logs, etc., to compute various kinds of derived data, such as
inverted indices, various representations of the graph structure of Web
documents, summaries of the number of pages crawled per host, and
the set of most frequent queries in a given day. Most such computa-
tions are conceptually straightforward. However, the input data is usu-
ally large and the computations have to be distributed across hundreds
or thousands of machines in order to finish in a reasonable amount of
time. The issues of how to parallelize the computation, distribute the
data, and handle failures conspire to obscure the original simple com-
putation with large amounts of complex code to deal with these issues.

As a reaction to this complexity, we designed a new abstraction that
allows us to express the simple computations we were trying to perform
but hides the messy details of parallelization, fault tolerance, data distri-
bution and load balancing in a library. Our abstraction is inspired by the
map and reduce primitives present in Lisp and many other functional lan-
guages. We realized that most of our computations involved applying a
map operation to each logical record’ in our input in order to compute a
set of intermediate key/value pairs, and then applying a reduce operation
to all the values that shared the same key in order to combine the derived
data appropriately. Our use of a functional model with user-specified map
and reduce operations allows us to parallelize large computations easily
and to use reexecution as the primary mechanism for fault tolerance.

The major contributions of this work are a simple and powerful
interface that enables automatic parallelization and distribution of
large-scale computations, combined with an implementation of this
interface that achieves high performance on large clusters of com-
modity PCs. The programming model can also be used to parallelize
computations across multiple cores of the same machine.

Section 2 describes the basic programming model and gives several
examples. In Sec tion 3, we describe an implementation of the Map Reduce
interface tailored towards our cluster-based computing environment.
Sec tion 4 describes several refinements of the programming model that
we have found useful. Sec tion 5 has performance measurements of our
implementation for a variety of tasks. In Section 6, we explore the use of
MapReduce within Google including our experiences in using it as the ba-
sis for a rewrite of our production indexing system. Section 7 discusses re-
lated and future work.

2 Programming Model
The computation takes a set of input key/value pairs, and produces a
set of output key/value pairs. The user of the MapReduce library
expresses the computation as two functions: map and reduce.

Map, written by the user, takes an input pair and produces a set of
intermediate key/value pairs. The MapReduce library groups together
all intermediate values associated with the same intermediate key I
and passes them to the reduce function.

The reduce function, also written by the user, accepts an interme-
diate key I and a set of values for that key. It merges these values
together to form a possibly smaller set of values. Typically just zero or
one output value is produced per reduce invocation. The intermediate
values are supplied to the user’s reduce function via an iterator. This
allows us to handle lists of values that are too large to fit in memory.

2.1 Example
Consider the problem of counting the number of occurrences of each
word in a large collection of documents. The user would write code
similar to the following pseudocode.

Abstract

MapReduce is a programming model and an associated implementation for processing
and generating large datasets that is amenable to a broad variety of real-world tasks.
Users specify the computation in terms of a map and a reduce function, and the under-

lying runtime system automatically parallelizes the computation across large-scale clusters of
machines, handles machine failures, and schedules inter-machine communication to make effi-
cient use of the network and disks. Programmers find the system easy to use: more than ten
thousand distinct MapReduce programs have been implemented internally at Google over the
past four years, and an average of one hundred thousand MapReduce jobs are executed on
Google’s clusters every day, processing a total of more than twenty petabytes of data per day.

Biographies
Jeff Dean (jeff@google.com) is a Google Fellow and is currently work-
ing on a large variety of large-scale distributed systems at Google’s Moun -
tain View, CA, facility.

Sanjay Ghemawat (sanjay@google.com) is a Google Fellow and works
on the distributed computing infrastructure used by most the company’s
products. He is based at Google’s Mountain View, CA, facility.

COMMUNICATIONS OF THE ACM January 2008/Vol. 51, No. 1 107

map(String key, String value):
// key: document name
// value: document contents
for each word w in value:

EmitIntermediate(w, “1”);

reduce(String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:

result += ParseInt(v);
Emit(AsString(result));

The map function emits each word plus an associated count of
occurrences (just 1 in this simple example). The reduce function
sums together all counts emitted for a particular word.

In addition, the user writes code to fill in a mapreduce specification
object with the names of the input and output files and optional tun-
ing parameters. The user then invokes the MapReduce function, pass-
ing it to the specification object. The user’s code is linked together
with the MapReduce library (implemented in C++). Our original
MapReduce paper contains the full program text for this example [8].

More than ten thousand distinct programs have been implemented
using MapReduce at Google, including algorithms for large-scale
graph processing, text processing, data mining, machine learning, sta-
tistical machine translation, and many other areas. More discussion of
specific applications of MapReduce can be found elsewhere [8, 16, 7].

2.2 Types
Even though the previous pseudocode is written in terms of string
inputs and outputs, conceptually the map and reduce functions sup-
plied by the user have associated types.

map (k1,v1) → list(k2,v2)
reduce (k2,list(v2)) → list(v2)

That is, the input keys and values are drawn from a different domain
than the output keys and values. Furthermore, the intermediate keys
and values are from the same domain as the output keys and values.

3. Implementation
Many different implementations of the MapReduce interface are pos-
sible. The right choice depends on the environment. For example, one
implementation may be suitable for a small shared-memory machine,
another for a large NUMA multiprocessor, and yet another for an even
larger collection of networked machines. Since our original article, sev-
eral open source implementations of MapReduce have been developed
[1, 2], and the applicability of MapReduce to a variety of problem
domains has been studied [7, 16].

This section describes our implementation of MapReduce that is tar-
geted to the computing environment in wide use at Google: large clusters
of commodity PCs connected together with switched Gigabit Ethernet
[4]. In our environment, machines are typically dual-processor x86
processors running Linux, with 4-8GB of memory per machine.
Individual machines typically have 1 gigabit/second of network band-
width, but the overall bisection bandwidth available per machine is con-

siderably less than 1 gigabit/second. A computing cluster contains many
thousands of machines, and therefore machine failures are common.
Storage is provided by inexpensive IDE disks attached directly to individ-
ual machines. GFS, a distributed file system developed in-house [10], is
used to manage the data stored on these disks. The file system uses repli-
cation to provide availability and reliability on top of unreliable hardware.

Users submit jobs to a scheduling system. Each job consists of a
set of tasks, and is mapped by the scheduler to a set of available
machines within a cluster.

3.1 Execution Overview
The map invocations are distributed across multiple machines by auto-
matically partitioning the input data into a set of M splits. The input
splits can be processed in parallel by different machines. Reduce invo-
cations are distributed by partitioning the intermediate key space into R
pieces using a partitioning function (e.g., hash(key) mod R). The number
of partitions (R) and the partitioning function are specified by the user.

Figure 1 shows the overall flow of a MapReduce operation in our
implementation. When the user program calls the MapReduce func-
tion, the following sequence of actions occurs (the numbered labels in
Figure 1 correspond to the numbers in the following list).

1. The MapReduce library in the user program first splits the input files
into M pieces of typically 16-64MB per piece (controllable by the
user via an optional parameter). It then starts up many copies of the
program on a cluster of machines.

2. One of the copies of the program—the master— is special. The rest
are workers that are assigned work by the master. There are M map
tasks and R reduce tasks to assign. The master picks idle workers and
assigns each one a map task or a reduce task.

3. A worker who is assigned a map task reads the contents of the corre-
sponding input split. It parses key/value pairs out of the input data and
passes each pair to the user-defined map function. The intermediate
key/value pairs produced by the map function are buffered in memory.

4. Periodically, the buffered pairs are written to local disk, partitioned
into R regions by the partitioning function. The locations of these
buffered pairs on the local disk are passed back to the master who
is responsible for forwarding these locations to the reduce workers.

5. When a reduce worker is notified by the master about these loca-
tions, it uses remote procedure calls to read the buffered data from
the local disks of the map workers. When a reduce worker has read
all intermediate data for its partition, it sorts it by the intermediate
keys so that all occurrences of the same key are grouped together.
The sorting is needed because typically many different keys map to
the same reduce task. If the amount of intermediate data is too large
to fit in memory, an external sort is used.

6. The reduce worker iterates over the sorted intermediate data and for
each unique intermediate key encountered, it passes the key and the
corresponding set of intermediate values to the user’s reduce func-
tion. The output of the reduce function is appended to a final out-
put file for this reduce partition.

108 January 2008/Vol. 51, No. 1 COMMUNICATIONS OF THE ACM

MapReduce: Simplified Data Processing on Large Clusters

7. When all map tasks and reduce tasks have been completed, the mas-
ter wakes up the user program. At this point, the MapReduce call
in the user program returns back to the user code.

After successful completion, the output of the mapreduce execution
is available in the R output files (one per reduce task, with file names
specified by the user). Typically, users do not need to combine these R
output files into one file; they often pass these files as input to another
MapReduce call or use them from another distributed application that
is able to deal with input that is partitioned into multiple files.

3.2 Master Data Structures
The master keeps several data structures. For each map task and
reduce task, it stores the state (idle, in-progress, or completed) and the
identity of the worker machine (for nonidle tasks).

The master is the conduit through which the location of interme-
diate file regions is propagated from map tasks to reduce tasks. There -
fore, for each completed map task, the master stores the locations and
sizes of the R intermediate file regions produced by the map task.
Updates to this location and size information are received as map tasks
are completed. The information is pushed incrementally to workers
that have in-progress reduce tasks.

3.3 Fault Tolerance
Since the MapReduce library is designed to help process very large
amounts of data using hundreds or thousands of machines, the library
must tolerate machine failures gracefully.

Handling Worker Failures
The master pings every worker periodically. If no response is received
from a worker in a certain amount of time, the master marks the worker
as failed. Any map tasks completed by the worker are reset back to their
initial idle state and therefore become eligible for scheduling on other
workers. Similarly, any map task or reduce task in progress on a failed
worker is also reset to idle and becomes eligible for rescheduling.

Completed map tasks are reexecuted on a failure because their out-
put is stored on the local disk(s) of the failed machine and is therefore
inaccessible. Completed reduce tasks do not need to be reexecuted
since their output is stored in a global file system.

When a map task is executed first by worker A and then later exe-
cuted by worker B (because A failed), all workers executing reduce
tasks are notified of the reexecution. Any reduce task that has not
already read the data from worker A will read the data from worker B.

MapReduce is resilient to large-scale worker failures. For example,
during one MapReduce operation, network maintenance on a running
cluster was causing groups of 80 machines at a time to become unreach-
able for several minutes. The MapReduce master simply re executed the
work done by the unreachable worker machines and continued to make
forward progress, eventually completing the MapReduce operation.

Semantics in the Presence of Failures
When the user-supplied map and reduce operators are deterministic
functions of their input values, our distributed implementation pro-
duces the same output as would have been produced by a nonfaulting
sequential execution of the entire program.

split 0

split 1

split 2

split 3

split 4

(1) fork

(3) read
(4) local write

(1) fork
(1) fork

(6) write

worker

worker

worker

Master

User
Program

output
file 0

output
file 1

worker

worker

(2)
assign
map

(2)
assign
reduce

(5) remote

(5) read

Input
files

Map
phasr

Intermediate files
(on local disks)

Reduce
phase

Output
files

Fig. 1. Execution overview.

COMMUNICATIONS OF THE ACM January 2008/Vol. 51, No. 1 109

We rely on atomic commits of map and reduce task outputs to
achieve this property. Each in-progress task writes its output to private
temporary files. A reduce task produces one such file, and a map task
produces R such files (one per reduce task). When a map task com-
pletes, the worker sends a message to the master and includes the names
of the R temporary files in the message. If the master receives a comple-
tion message for an already completed map task, it ignores the message.
Otherwise, it records the names of R files in a master data structure.

When a reduce task completes, the reduce worker atomically renames
its temporary output file to the final output file. If the same reduce task
is executed on multiple machines, multiple rename calls will be executed
for the same final output file. We rely on the atomic rename operation pro-
vided by the underlying file system to guarantee that the final file system
state contains only the data produced by one execution of the reduce task.

The vast majority of our map and reduce operators are deterministic,
and the fact that our semantics are equivalent to a sequential execution
in this case makes it very easy for programmers to reason about their
program’s behavior. When the map and/or reduce operators are nonde-
terministic, we provide weaker but still reasonable semantics. In the
presence of nondeterministic operators, the output of a particular
reduce task R1 is equivalent to the output for R1 produced by a sequen-
tial execution of the nondeterministic program. However, the output for
a different reduce task R2 may correspond to the output for R2 produced
by a different sequential execution of the nondeterministic program.

Consider map task M and reduce tasks R1 and R2. Let e(Ri) be the
execution of R1 that committed (there is exactly one such execution).
The weaker semantics arise because e(R1) may have read the output
produced by one execution of M, and e(R2) may have read the output
produced by a different execution of M.

3.4 Locality
Network bandwidth is a relatively scarce resource in our computing envi-
ronment. We conserve network bandwidth by taking advantage of the
fact that the input data (managed by GFS [10]) is stored on the local
disks of the machines that make up our cluster. GFS divides each file
into 64MB blocks and stores several copies of each block (typically 3
copies) on different machines. The MapReduce master takes the loca-
tion information of the input files into account and attempts to schedule
a map task on a machine that contains a replica of the corresponding
input data. Failing that, it attempts to schedule a map task near a replica
of that task’s input data (e.g., on a worker machine that is on the same
network switch as the machine containing the data). When running large
MapReduce operations on a significant fraction of the workers in a clus-
ter, most input data is read locally and consumes no network bandwidth.

3.5 Task Granularity
We subdivide the map phase into M pieces and the reduce phase into
R pieces as described previously. Ideally, M and R should be much
larger than the number of worker machines. Having each worker per-
form many different tasks improves dynamic load balancing and also
speeds up recovery when a worker fails: the many map tasks it has
completed can be spread out across all the other worker machines.

There are practical bounds on how large M and R can be in our imple-
mentation since the master must make O(M+R) scheduling decisions
and keep O(M*R) state in memory as described. (The constant factors
for memory usage are small, however. The O(M*R) piece of the state
consists of approximately one byte of data per map task/ reduce task pair.)

Furthermore, R is often constrained by users because the output of
each reduce task ends up in a separate output file. In practice, we tend
to choose M so that each individual task is roughly 16MB to 64MB of
input data (so that the locality optimization described previously is most
effective), and we make R a small multiple of the number of worker
machines we expect to use. We often perform MapReduce computa-
tions with M=200,000 and R=5,000, using 2,000 worker machines.

3.6 Backup Tasks
One of the common causes that lengthens the total time taken for a
MapReduce operation is a straggler, that is, a machine that takes an
unusually long time to complete one of the last few map or reduce tasks
in the computation. Stragglers can arise for a whole host of reasons. For
example, a machine with a bad disk may experience frequent cor-
rectable errors that slow its read performance from 30MB/s to 1MB/s.
The cluster scheduling system may have scheduled other tasks on the
machine, causing it to execute the MapReduce code more slowly due
to competition for CPU, memory, local disk, or network bandwidth. A
recent problem we experienced was a bug in machine initialization
code that caused processor caches to be disabled: computations on
affected machines slowed down by over a factor of one hundred.

We have a general mechanism to alleviate the problem of stragglers.
When a MapReduce operation is close to completion, the master
schedules backup executions of the remaining in-progress tasks. The
task is marked as completed whenever either the primary or the
backup execution completes. We have tuned this mechanism so that it
typically increases the computational resources used by the operation
by no more than a few percent. We have found that this significantly
reduces the time to complete large MapReduce operations. As an
example, the sort program described in Section 5.3 takes 44% longer
to complete when the backup task mechanism is disabled.

4 Refinements
Although the basic functionality provided by simply writing map and
reduce functions is sufficient for most needs, we have found a few
extensions useful. These include:

• user-specified partitioning functions for determining the mapping
of intermediate key values to the R reduce shards;

• ordering guarantees: Our implementation guarantees that within
each of the R reduce partitions, the intermediate key/value pairs are
processed in increasing key order;

• user-specified combiner functions for doing partial combination of
generated intermediate values with the same key within the same
map task (to reduce the amount of intermediate data that must be
transferred across the network);

• custom input and output types, for reading new input formats and
producing new output formats;

• a mode for execution on a single machine for simplifying debugging
and small-scale testing.

The original article has more detaile d discussions of each of these
items [8].

110 January 2008/Vol. 51, No. 1 COMMUNICATIONS OF THE ACM

MapReduce: Simplified Data Processing on Large Clusters

5 Performance
In this section, we measure the performance of MapReduce on two com-
putations running on a large cluster of machines. One computation
searches through approximately one terabyte of data looking for a particu-
lar pattern. The other computation sorts approximately one terabyte of data.

These two programs are representative of a large subset of the real
programs written by users of MapReduce—one class of programs
shuffles data from one representation to another, and another class
extracts a small amount of interesting data from a large dataset.

5.1 Cluster Configuration
All of the programs were executed on a cluster that consisted of approx-
imately 1800 machines. Each machine had two 2GHz Intel Xeon
processors with Hyper-Threading enabled, 4GB of memory, two
160GB IDE disks, and a gigabit Ethernet link. The machines were
arranged in a two-level tree-shaped switched network with approxi-
mately 100-200Gbps of aggregate bandwidth available at the root. All of
the machines were in the same hosting facility and therefore the round-
trip time between any pair of machines was less than a millisecond.

Out of the 4GB of memory, approximately 1-1.5GB was reserved by
other tasks running on the cluster. The programs were executed on a
weekend afternoon when the CPUs, disks, and network were mostly idle.

5.2 Grep
The grep program scans through 1010 100-byte records, searching for a rel-
atively rare three-character pattern (the pattern occurs in 92,337 records).
The input is split into approximately 64MB pieces (M = 15000), and the
entire output is placed in one file (R = 1).

Fig. 2. Data transfer rate over time (mr-grep).

Figure 2 shows the progress of the computation over time. The
Y-axis shows the rate at which the input data is scanned. The rate grad-
ually picks up as more machines are assigned to this MapReduce com-
putation and peaks at over 30 GB/s when 1764 workers have been
assigned. As the map tasks finish, the rate starts dropping and hits zero
about 80 seconds into the computation. The entire computation takes
approximately 150 seconds from start to finish. This includes about a
minute of startup overhead. The overhead is due to the propagation of
the program to all worker machines and delays interacting with GFS to
open the set of 1000 input files and to get the information needed for
the locality optimization.

5.3 Sort
The sort program sorts 1010 100-byte records (approximately 1 terabyte
of data). This program is modeled after the TeraSort benchmark [12].

The sorting program consists of less than 50 lines of user code. The
final sorted output is written to a set of 2-way replicated GFS files (i.e.,
2 terabytes are written as the output of the program).

As before, the input data is split into 64MB pieces (M = 15000). We
partition the sorted output into 4000 files (R = 4000). The partitioning
function uses the initial bytes of the key to segregate it into one of pieces.

Our partitioning function for this benchmark has built-in knowl-
edge of the distribution of keys. In a general sorting program, we would
add a prepass MapReduce operation that would collect a sample of the
keys and use the distribution of the sampled keys to compute split-
points for the final sorting pass.

Fig. 3. Data transfer rate over time (mr-sort).

Figure 3 shows the progress of a normal execution of the sort pro-
gram. The top-left graph shows the rate at which input is read. The rate
peaks at about 13GB/s and dies off fairly quickly since all map tasks fin-
ish before 200 seconds have elapsed. Note that the input rate is less

COMMUNICATIONS OF THE ACM January 2008/Vol. 51, No. 1 111

than for grep. This is because the sort map tasks spend about half their
time and I/O bandwidth writing intermediate output to their local disks.
The corresponding intermediate output for grep had negligible size.

A few things to note: the input rate is higher than the shuffle rate
and the output rate because of our locality optimization; most data is
read from a local disk and bypasses our relatively bandwidth con-
strained network. The shuffle rate is higher than the output rate
because the output phase writes two copies of the sorted data (we
make two replicas of the output for reliability and availability reasons).
We write two replicas because that is the mechanism for reliability and
availability provided by our underlying file system. Network bandwidth
requirements for writing data would be reduced if the underlying file
system used erasure coding [15] rather than replication.

The original article has further experiments that examine the
effects of backup tasks and machine failures [8].

6 Experience
We wrote the first version of the MapReduce library in February of
2003 and made significant enhancements to it in August of 2003,
including the locality optimization, dynamic load balancing of task exe-
cution across worker machines, etc. Since that time, we have been
pleasantly surprised at how broadly applicable the MapReduce library
has been for the kinds of problems we work on. It has been used
across a wide range of domains within Google, including:

• large-scale machine learning problems,

• clustering problems for the Google News and Froogle products,

• extracting data to produce reports of popular queries (e.g. Google
Zeitgeist and Google Trends),

• extracting properties of Web pages for new experiments and prod-
ucts (e.g. extraction of geographical locations from a large corpus of
Web pages for localized search),

• processing of satellite imagery data,

• language model processing for statistical machine translation, and

• large-scale graph computations.

Fig. 4. MapReduce instances over time.

Figure 4 shows the significant growth in the number of separate
MapReduce programs checked into our primary source-code manage-
ment system over time, from 0 in early 2003 to almost 900 in Septem -
ber 2004, to about 4000 in March 2006. MapReduce has been so
successful because it makes it possible to write a simple program and
run it efficiently on a thousand machines in a half hour, greatly speed-
ing up the development and prototyping cycle. Furthermore, it allows
programmers who have no experience with distributed and/or parallel
systems to exploit large amounts of resources easily.

Table I. MapReduce Statistics for Different Months.

Aug. ’04 Mar. ’06 Sep. ’07
Number of jobs (1000s) 29 171 2,217
Avg. completion time (secs) 634 874 395
Machine years used 217 2,002 11,081
map input data (TB) 3,288 52,254 403,152
map output data (TB) 758 6,743 34,774
reduce output data (TB) 193 2,970 14,018
Avg. machines per job 157 268 394
Unique implementations
map 395 1958 4083
reduce 269 1208 2418

At the end of each job, the MapReduce library logs statistics about
the computational resources used by the job. In Table I, we show some
statistics for a subset of MapReduce jobs run at Google in various
months, highlighting the extent to which MapReduce has grown and
become the de facto choice for nearly all data processing needs at Google.

6.1 Large-Scale Indexing
One of our most significant uses of MapReduce to date has been a
complete rewrite of the production indexing system that produces the
data structures used for the Google Web search service. The indexing
system takes as input a large set of documents that have been retrieved
by our crawling system, stored as a set of GFS files. The raw contents
for these documents are more than 20 terabytes of data. At the time
we converted the indexing system to use MapReduce in 2003, it ran as
a sequence of eight MapReduce operations. Since that time, because
of the ease with which new phases can be added, many new phases
have been added to the indexing system. Using MapReduce (instead
of the ad-hoc distributed passes in the prior version of the indexing
system) has provided several benefits.

• The indexing code is simpler, smaller, and easier to understand be-
cause the code that deals with fault tolerance, distribution, and par-
allelization is hidden within the MapReduce library. For example, the
size of one phase of the computation dropped from approximately
3800 lines of C++ code to approximately 700 lines when expressed
using MapReduce.

• The performance of the MapReduce library is good enough that we
can keep conceptually unrelated computations separate instead of
mixing them together to avoid extra passes over the data. This makes
it easy to change the indexing process. For example, one change that
took a few months to make in our old indexing system took only a
few days to implement in the new system.

112 January 2008/Vol. 51, No. 1 COMMUNICATIONS OF THE ACM

MapReduce: Simplified Data Processing on Large Clusters

• The indexing process has become much easier to operate because
most of the problems caused by machine failures, slow machines,
and networking hiccups are dealt with automatically by the MapRe-
duce library without operator intervention. Furthermore, it is easy to
improve the performance of the indexing process by adding new ma-
chines to the indexing cluster.

7 Related Work
Many systems have provided restricted programming models and used
the restrictions to parallelize the computation automatically. For example,
an associative function can be computed over all prefixes of an N element
array in log N time on N processors using parallel prefix computations [6,
11, 14]. MapReduce can be considered a simplification and distillation of
some of these models based on our experience with large real-world com-
putations. More significantly, we provide a fault-tolerant implementation
that scales to thousands of processors. In contrast, most of the parallel
processing systems have only been implemented on smaller scales and
leave the details of handling machine failures to the programmer.

Our locality optimization draws its inspiration from techniques
such as active disks [13, 17], where computation is pushed into pro-
cessing elements that are close to local disks, to reduce the amount of
data sent across I/O subsystems or the network.

The sorting facility that is a part of the MapReduce library is simi-
lar in operation to NOW-Sort [3]. Source machines (map workers)
partition the data to be sorted and send it to one of R reduce workers.
Each reduce worker sorts its data locally (in memory if possible). Of
course NOW-Sort does not have the user-definable map and reduce
functions that make our library widely applicable.

BAD-FS [5] and TACC [9] are two other systems that rely on re -
execution as a mechanism for implementing fault tolerance.

The original article has a more complete treatment of related work [8].

Conclusions
The MapReduce programming model has been successfully used at
Google for many different purposes. We attribute this success to several
reasons. First, the model is easy to use, even for programmers without ex-
perience with parallel and distributed systems, since it hides the details
of parallelization, fault tolerance, locality optimization, and load balanc-
ing. Second, a large variety of problems are easily expressible as MapRe-
duce computations. For example, MapReduce is used for the generation
of data for Google’s production Web search service, for sorting, data min-
ing, machine learning, and many other systems. Third, we have developed
an implementation of MapReduce that scales to large clusters of ma-
chines comprising thousands of machines. The implementation makes
efficient use of these machine resources and therefore is suitable for use
on many of the large computational problems encountered at Google.

By restricting the programming model, we have made it easy to par-
allelize and distribute computations and to make such computations
fault tolerant. Second, network bandwidth is a scarce resource. A
number of optimizations in our system are therefore targeted at reduc-
ing the amount of data sent across the network: the locality optimiza-
tion allows us to read data from local disks, and writing a single copy
of the intermediate data to local disk saves network bandwidth. Third,
redundant execution can be used to reduce the impact of slow
machines, and to handle machine failures and data loss.

Acknowledgements
Josh Levenberg has been instrumental in revising and extending the user-
level MapReduce API with a number of new features. We would like to es-
pecially thank others who have worked on the system and all the users of
MapReduce in Google’s engineering organization for providing helpful
feedback, suggestions, and bug reports.

References
1. Hadoop: Open source implementation of MapReduce. http://

lucene. apache.org/hadoop/.

2. The Phoenix system for MapReduce programming. http:// csl.
 stanford. edu/~christos/sw/phoenix/.

3. Arpaci-Dusseau, A. C., Arpaci-Dusseau, R. H., Culler, D. E., Heller-
stein, J. M., and Patterson, D. A. 1997. High-performance sorting on
networks of workstations. In Proceedings of the 1997 ACM SIGMOD
International Conference on Management of Data. Tucson, AZ.

4 Barroso, L. A., Dean, J., and Urs Hölzle, U. 2003. Web search for a
planet: The Google cluster architecture. IEEE Micro 23, 2, 22-28.

5. Bent, J., Thain, D., Arpaci-Dusseau, A. C., Arpaci-Dusseau, R. H.,
and Livny, M. 2004. Explicit control in a batch-aware distributed file
system. In Proceedings of the 1st USENIX Symposium on Networked
Systems Design and Implementation (NSDI).

6. Blelloch, G. E. 1989. Scans as primitive parallel operations. IEEE
Trans. Comput. C-38, 11.

7. Chu, C.-T., Kim, S. K., Lin, Y. A., Yu, Y., Bradski, G., Ng, A., and
Olukotun, K. 2006. Map-Reduce for machine learning on multicore.
In Proceedings of Neural Information Processing Systems Conference
(NIPS). Vancouver, Canada.

8. Dean, J. and Ghemawat, S. 2004. MapReduce: Simplified data pro-
cessing on large clusters. In Proceedings of Operating Systems Design
and Implementation (OSDI). San Francisco, CA. 137-150.

9. Fox, A., Gribble, S. D., Chawathe, Y., Brewer, E. A., and Gauthier, P.
1997. Cluster-based scalable network services. In Proceedings of the
16th ACM Symposium on Operating System Principles. Saint-Malo,
France. 78-91.

10. Ghemawat, S., Gobioff, H., and Leung, S.-T. 2003. The Google file
system. In 19th Symposium on Operating Systems Principles. Lake
George, NY. 29-43.

11. Gorlatch, S. 1996. Systematic efficient parallelization of scan and
other list homomorphisms. In L. Bouge, P. Fraigniaud, A. Mignotte,
and Y. Robert, Eds. Euro-Par’96. Parallel Processing, Lecture Notes in
Computer Science, vol. 1124. Springer-Verlag. 401-408

12. Gray, J. Sort benchmark home page. http:// research. microsoft. com/
barc/ SortBenchmark/.

13. Huston, L., Sukthankar, R., Wickremesinghe, R., Satyanarayanan, M.,
Ganger, G. R., Riedel, E., and Ailamaki, A. 2004. Diamond: A storage
architecture for early discard in interactive search. In Proceed ings of
the 2004 USENIX File and Storage Technologies FAST Conference.

14. Ladner, R. E., and Fischer, M. J. 1980. Parallel prefix computation.
JACM 27, 4. 831-838.

15. Rabin, M. O. 1989. Efficient dispersal of information for security,
load balancing and fault tolerance. JACM 36, 2. 335-348.

16. Ranger, C., Raghuraman, R., Penmetsa, A., Bradski, G., and
Kozyrakis, C. 2007. Evaluating mapreduce for multi-core and multi-
processor systems. In Proceedings of 13th International Symposium on
High-Performance Computer Architecture (HPCA). Phoenix, AZ.

17. Riedel, E., Faloutsos, C., Gibson, G. A., and Nagle, D. Active disks
for large-scale data processing. IEEE Computer. 68-74.

COMMUNICATIONS OF THE ACM January 2008/Vol. 51, No. 1 113

