
INTRODUCTION TO
DATA SCIENCE
JMCT

SLIDES BY JPD

Lecture #24 – 04/28/2021

CMSC320

DIMENSIONALITY REDUCTION

2

Thanks to: Zico Kolter

PRINCIPAL COMPONENT
ANALYSIS (PCA)

So you’ve measured lots of features …

• Overfitting, interpretability issues, visualization, computation

Principal component analysis (PCA) does this by preserving
the axis of major variation in the data:

3

Can we combine raw features into new features that
yield a simpler description of the same system?

Images: Zico Kolter

PRINCIPAL COMPONENT
ANALYSIS (PCA)

Assume: data is normalized ??????????

• Zero mean, unit (= 1) variance

Hypothesis function:

• First multiply input by low rank matrix W (“compress” it), then
map back into the initial space using U

Loss function: squared distance (like k-means)

Optimization problem:

4

PRINCIPAL COMPONENT
ANALYSIS (PCA)

Dimensionality reduction: main use of PCA for data science
applications

If , then is a reduced (probably
with some loss) representation of input features x

5

PRINCIPAL COMPONENT
ANALYSIS (PCA)

PCA optimization problem is non-convex ???????????

We can solve the problem exactly using the singular value
decomposition (SVD, from linear algebra):

• Factorize matrix M = U Σ VT (also used to approximate)

6

m x n ≈

UM Σ VT

m x r

r x nr x r

CMSC422
MATH240

PRINCIPAL COMPONENT
ANALYSIS (PCA)

Solving PCA exactly using the SVD:

1. Normalize input data, pick #components k

2. Compute (exact) SVD of X = U Σ VT

3. Return:

• U = V:,1:k Σ-1
1:k,1:k

• W = VT
:,1:k

Loss is

7

CMSC422
MATH240

PCA IN PYTHON

Can roll your own PCA easily (assuming a call to SVD via
SciPy or similar) …

… or just use Scikit-Learn:

8

from sklearn.decomposition import PCA

X=np.array([[-1,-1],[-2,-1],[-3,-2],[1,1],[2,1],[3,2]])

Fit PCA with 2 components (i.e., two final features)
pca = PCA(n_components=2)
pca.fit(X)
print(pca.explained_variance_ratio_)

[0.99244... 0.00755...]

Looks like our data basically sit on a line

HOW TO USE PCA & FRIENDS IN
PRACTICE
Unsupervised learning methods are useful for EDA

• Cluster or reduce to a few dimensions and visualize!

Also useful as data prep before supervised learning!

1. Run PCA, get W matrix

2. Transform – (reduce colinearity, dimension)

3. Train and test your favorite supervised classifier

Or use k-means to set up radial basis functions (RBFs):

4. Get k centers

5. Create RBF features

9

RECOMMENDER SYSTEMS &
COLLABORATIVE FILTERING 1
0

NETFLIX PRIZE

Recommender systems: predict a user’s rating of an item

Netflix Prize: $1MM to the first team that beats our in-house
engine by 10%

• Happened after about three years

• Model was never used by Netflix for a variety of reasons

• Out of date (DVDs vs streaming)
• Too complicated / not interpretable

11

Twilight Wall-E Twilight II TFotF

User 1 +1 -1 +1 ?

User 2 +1 -1 ? ?

User 3 -1 +1 -1 +1

RECOMMENDER
SYSTEMS

Recommender systems feel like:

• Supervised learning (we know the user watched some movies,
so these are like labels)

• Unsupervised learning (we want to find latent structure, e.g.,
genres of movies)

They fall somewhere in between, in “Information Filtering” or
Information Retrieval” …

• … but we can still just phrase the problem in terms of
hypothesis classes, loss functions, and optimization problems

1
2

PREDICTION
Pure user information:

• Age

• Location

• Profession/Salary

Pure item information:

• Movie budget

• Main actors

• Is it a Netflix release?

User-item information:

• Which items are most similar to those I’ve watched before?

• Which users are most similar to me, and what did they watch?

1
3

COLLABORATIVE
FILTERING
Collaborative filtering (CF): recommender systems that
predict based only on the expressed preferences of other
users for an item

1
4

i1 i2 i3 i4

u1 1 3

u2 2 5

u3 3 5

u4 4 4

X =
Rows are users

Cols are items

MATRIX VIEW
Goal: “fill in” the matrix

The matrix is sparse, but the empty cells are not (necessarily)
zero!

1
5

i1 i2 i3 i4

u1 1 ? ? 3

u2 ? 2 5 ?

u3 ? 3 ? 5

u4 4 ? 4 ?

APPROACHES TO CF

User-user:

• Find users who look like me – based on items that we’ve both
rated

• Predict scores for my unrated items as average of those users

Item-item:

• Find similar items (based on scores from all users who have
rated), predict scores for other users based off this

Matrix factorization:

• Find a low-rank decomposition of X that agrees (exactly,
approximately) at the observed values

1
6

APPROACH #1: ITEM-BASED CF EX:
INFER (USER 1, ITEM 3)

Item 1 Item 2 Item 3 Item 4 Item 5

User 1 8 1 ? 2 7

User 2 2 ? 5 7 5

User 3 5 4 7 4 7

User 4 7 1 7 3 8

User 5 1 7 4 6 ?
User 6 8 3 8 3 7

Example due to Qiang Yang [HKUST] 1
7

HOW TO CALCULATE SIMILARITY
(ITEMS 3 AND 5)?

Item 1 Item 2 Item 3 Item 4 Item 5

User 1 8 1 ? 2 7

User 2 2 ? 5 7 5

User 3 5 4 7 4 7

User 4 7 1 7 3 8

User 5 1 7 4 6 ?
User 6 8 3 8 3 7

1
8

Example due to Qiang Yang [HKUST]

SIMILARITY BETWEEN ITEMS
Item 3 Item 4 Item 5

? 2 7

5 7 5

7 4 7

7 3 8

4 6 ?
8 3 7

How should we
calculate the
similarity between
two items (e.g.,
items 3 and 5)?

We’ve done this
before in a
different context!

1
9

SIMILARITY BETWEEN ITEMS
Item 3 Item 5

? 7

5 5

7 7

7 8

4 ?
8 7

Only consider users (i.e., rows)
who have rated both items (i.e.,
non-empty)
One approach: For each user:

Calculate difference in ratings
for the

two items
Take the average of this

difference
over the users

Another approach: cosine
similarity!

Can also use Pearson Correlation
Coefficients (also in user-user
approach)

 sim(item 3, item 5) = cosine((5, 7, 7, 8), (5,
7, 8, 7))

= (5*5 + 7*7 + 7*8 + 8*7)/(sqrt(52+72+72+82)*
sqrt(52+72+82+72))

2
0

PREDICTION: CALCULATING RANKING
R(USER1,ITEM3)

Item
3

2

1
8

7
Item

5

Item
4

Item
2

Item
1

Where a is a normalization factor, which is
1/[the sum of all sim(itemi,item3)].

2
1

)},(),(

),(),(

),(),(

),(),({*),(

3551

3441

3221

311131

itemitemsimitemuserr

itemitemsimitemuserr

itemitemsimitemuserr

itemitemsimitemuserritemuserr









CF IN PYTHON
● SKLearn does not have CF ‘built in’ :(

● Some alternatives

● “Surprise” package: http://surpriselib.com/

● ‘fast.ai’ library: https://docs.fast.ai/collab.html

2
2

(SOME MORE)
RECOMMENDER SYSTEMS (ISH) 2
3

ASSOCIATION RULES

Last time: CF systems give predictions based on other users’
scores of the same item

Complementary idea: Find rules that associate the presence
of one set of items with that of another set of items

2
4

FORMAT OF
ASSOCIATION RULES
Typical Rule form:

• Body  Head

• Body and Head can be represented as sets of items (in transaction data) or as
conjunction of predicates (in relational data)

• Support and Confidence

• Usually reported along with the rules
• Metrics that indicate the strength of the item associations

Examples:

• {diaper, milk}  {beer} [support: 0.5%, confidence: 78%]

• buys(x, "bread") /\ buys(x, “eggs")  buys(x, "milk") [sup: 0.6%, conf: 65%]

• major(x, "CS") /\ takes(x, "DB")  grade(x, "A") [1%, 75%]

• age(x,30-45) /\ income(x, 50K-75K)  owns(x, SUV)

• age=“30-45”, income=“50K-75K”  car=“SUV”

Thanks to: Bamshad Mobasher

2
5

ASSOCIATION RULES:
BASIC CONCEPTS
Let D be database of transactions

Let I be the set of items that appear in the database:

• e.g., I = {A, B, C, D, E, F}

Each transaction t is a subset of I

A rule is an implication among itemsets X and Y, of the form by X  Y,
where X  I, Y  I, and X  Y= 

• e.g.: {B,C}  {A}

 2
6

Transaction ID Items

1000 A, B, C

2000 A, B

3000 A, D

4000 B, E, F

Thanks to: Bamshad Mobasher

Customer
buys
diaper

Customer
buys both

Customer
buys beer

ASSOCIATION RULES:
BASIC CONCEPTS
Itemset

• A set of one or more items

• E.g.: {Milk, Bread, Diaper}
• k-itemset

• An itemset that contains k items

Support count ()

• Frequency of occurrence of an itemset (number of
transactions in which it appears)

• E.g. ({Milk, Bread,Diaper}) = 2

Support

• Fraction of the transactions in which an itemset appears

• E.g. s({Milk, Bread, Diaper}) = 2/5

Frequent Itemset

• An itemset whose support is greater than or equal to a
minsup threshold

2
7

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

Example:

ASSOCIATION RULES:
BASIC CONCEPTS
Association Rule

• X  Y, where X and Y are non-
overlapping itemsets

• {Milk, Diaper}  {Beer}

Rule Evaluation Metrics

• Support (s)

• Fraction of transactions that contain both
X and Y

• i.e., support of the itemset X  Y
• Confidence (c)

• Measures how often items in Y
appear in transactions that
contain X

2
8

Beer}Diaper,Milk{ 

4.0
5

2

|D|

)BeerDiaper,,Milk(



s

67.0
3
2

)Diaper,Milk(
)BeerDiaper,Milk,(





c

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

ASSOCIATION RULES IN
PRACTICE

Orange3 is a {GUI, Python API, …} that:

• Enumerates frequent itemsets

• Performs association rule mining

• (Wrapper calls to, shared functionality with, Scikit-Learn)

conda install –c ales-erjavec orange3
More information:
https://blog.biolab.si/2016/04/25/association-rules-in-orange/

In general:

• Can be useful for interpretable, fast data mining

• Typically doesn’t consider order, scalability issues …

2
9

https://blog.biolab.si/2016/04/25/association-rules-in-orange/

SCALING IT UP:
BIG DATA & MAPREDUCE

3
0

Thanks to: Jeff Dean, Sanjay Ghemawa, Zico Kolter

3
1

3
2

3
3

3
4

3
5

3
6

3
7

AN EXAMPLE PROGRAM
Present the concepts of MapReduce using the “typical example” of
MR, Word Count

• Input: a volume of raw text, of unspecified size (could be KB, MB, TB, it
doesn’t matter!)

• Output: a list of words, and their occurrence count.

(Assume that words are split correctly; ignore capitalization and
punctuation.)

Example:

• The doctor went to the store. =>

• The, 2
• Doctor, 1
• Went, 1
• To, 1
• Store, 1

3
8

MAP? REDUCE?

Mappers read in data from the filesystem, and output
(typically) modified data

Reducers collect all of the mappers output on the keys, and
output (typically) reduced data

The outputted data is written to disk

All data is in terms of key-value pairs (“The”  2)

3
9

MAPREDUCE VS
HADOOP

The paper is written by two researchers at Google, and
describes their programming paradigm

Unless you work at Google, or use Google App Engine, you
won’t use it! (And even then, you might not.)

Open Source implementation is Hadoop MapReduce

• Not developed by Google

• Started by Yahoo!; now part of Apache

Google’s implementation (at least the one described) is
written in C++

Hadoop is written in Java

4
0

MAJOR COMPONENTS
User Components:

• Mapper
• Reducer
• Combiner (Optional)
• Partitioner (Optional) (Shuffle)
• Writable(s) (Optional)

System Components:

• Master
• Input Splitter*
• Output Committer*
• * You can use your own if you really want!

Image source: http://www.ibm.com/developerworks/java/library/l-hadoop-3/index.html 4
1

KEY NOTES
Mappers and Reducers are typically single threaded and
deterministic

• Determinism allows for restarting of failed jobs, or speculative execution

Need to handle more data? Just add more Mappers/Reducers!

• No need to handle multithreaded code

• Since they’re all independent of each other, you can run (almost)
arbitrary number of nodes

Mappers/Reducers run on arbitrary machines. A machine typically
multiple map and reduce slots available to it, typically one per
processor core

Mappers/Reducers run entirely independent of each other

• In Hadoop, they run in separate JVMs

4
2

BASIC CONCEPTS
All data is represented in key-value pairs of an arbitrary type

Data is read in from a file or list of files, from distributed FS

Data is chunked based on an input split

• A typical chunk is 64MB (more or less can be configured depending on your use
case)

Mappers read in a chunk of data

Mappers emit (write out) a set of data, typically derived from its input

Intermediate data (the output of the mappers) is split to a number of reducers

Reducers receive each key of data, along with ALL of the values associated
with it (this means each key must always be sent to the same reducer)

• Essentially, <key, set<value>>

Reducers emit a set of data, typically reduced from its input which is written
to disk

4
3

DATA FLOW

Mapper 2

Mapper 0

Mapper 1

Reducer 0

Reducer 1

Out
0

Out
1

In
pu

t

Split 2

Split 1

Split 0

4
4

Master Mastern workers

INPUT SPLITTER

Is responsible for splitting your input into multiple chunks

These chunks are then used as input for your mappers

Splits on logical boundaries. The default is 64MB per chunk

• Depending on what you’re doing, 64MB might be a LOT of data!
You can change it

Typically, you can just use one of the built in splitters, unless
you are reading in a specially formatted file

4
5

MAPPER
Reads in input pair <K,V> (a section as split by the input splitter)

Outputs a pair <K’, V’>

Ex. For our Word Count example, with the following input: “The
teacher went to the store. The store was closed; the store opens
in the morning. The store opens at 9am.”

The output would be:

• <The, 1> <teacher, 1> <went, 1> <to, 1> <the, 1> <store, 1>
<the, 1> <store, 1> <was, 1> <closed, 1> <the, 1> <store, 1>
<opens, 1> <in, 1> <the, 1> <morning, 1> <the 1> <store, 1>
<opens, 1> <at, 1> <9am, 1>

4
6

REDUCER

Accepts the Mapper output, and collects values on the key

• All inputs with the same key must go to the same reducer!

Input is typically sorted, output is output exactly as is

For our example, the reducer input would be:

• <The, 1> <teacher, 1> <went, 1> <to, 1> <the, 1> <store, 1>
<the, 1> <store, 1> <was, 1> <closed, 1> <the, 1> <store, 1>
<opens, 1> <in, 1> <the, 1> <morning, 1> <the 1> <store, 1>
<opens, 1> <at, 1> <9am, 1>

The output would be:

• <The, 6> <teacher, 1> <went, 1> <to, 1> <store, 3> <was, 1>
<closed, 1> <opens, 1> <morning, 1> <at, 1> <9am, 1>

4
7

COMBINER

Essentially an intermediate reducer

• Is optional

Reduces output from each mapper, reducing bandwidth and
sorting

Cannot change the type of its input

• Input types must be the same as output types

4
8

OUTPUT COMMITTER

Is responsible for taking the reduce output, and committing it
to a file

Typically, this committer needs a corresponding input splitter
(so that another job can read the input)

Again, usually built in splitters are good enough, unless you
need to output a special kind of file

4
9

PARTITIONER
(SHUFFLER)
Decides which pairs are sent to which reducer

Default is simply:

• Key.hashCode() % numOfReducers

User can override to:

• Provide (more) uniform distribution of load between reducers

• Some values might need to be sent to the same reducer

• Ex. To compute the relative frequency of a pair of words <W1,
W2> you would need to make sure all of word W1 are sent to
the same reducer

• Binning of results

5
0

MASTER
Responsible for scheduling & managing jobs

Scheduled computation should be close to the data if possible

• Bandwidth is expensive! (and slow)

• This relies on a Distributed File System (e.g. GFS)!

If a task fails to report progress (such as reading input, writing
output, etc), crashes, the machine goes down, etc, it is assumed to
be stuck, and is killed, and the step is re-launched (with the same
input)

The Master is handled by the framework, no user code is necessary

5
1

MAPREDUCE IN PYTHON

5
2

def mapreduce_execute(data, mapper, reducer):
 values = map(mapper, data)

 groups = {}
 for items in values:
 for k,v in items:
 if k not in groups:
 groups[k] = [v]
 else:
 groups[k].append(v)

 output = [reducer(k,v) for k,v in groups.items()]
 return output

MAPREDUCE IN PYTHON

Don’t do the last slide …

Python’s mrjob library:

• write mappers and reducers in Python

• Deploy on Hadoop systems, Amazon Elastic MR, Google
Cloud

5
3

from mrjob.job import MRJob

class WordOccurrenceCount(MRJob):
 def mapper(self, _, line):
 for word in line.split(" "):
 yield word, 1

 def reducer(self, key, values):
 yield key, sum(values)

MAPREDUCE?

Good:

• All you need to do is write a mapper and a reducer

• Can get away with not exposing any of the internals (data
splitting, locality issues, redundancy, etc) if you’re using a
ready-made engine

Bad:

• Lots of reading/writing from disk (in part because this helps
with redundancy)

• Sometimes communication between processes is necessary

• Talk about later: parameter servers, GraphLab aka Dato, etc

5
4

NEXT UP:

REVIEW OF HYPOTHESIS TESTING
(AND THEN A BUNCH OF STUFF LIKE PRIVACY,

ETHICS, DEBUGGING DATA SCIENCE, ETC!)

5
5

	Slide 1
	Dimensionality reduction
	Principal Component Analysis (PCA)_clipboard0
	Principal Component Analysis (PCA)_clipboard1
	Principal Component Analysis (PCA)_clipboard2
	Principal Component Analysis (PCA)_clipboard3
	Principal Component Analysis (PCA)
	PCA in Python
	How to use PCA & Friends in practice
	Recommender Systems & Collaborative filtering
	Netflix Prize
	Recommender Systems
	Prediction
	Collaborative filtering
	Matrix view
	Approaches to CF
	Approach #1: Item-based CF Ex: infer (user 1, item 3)
	How to Calculate Similarity (ItemS 3 and 5)?
	Similarity between Items
	Similarity between items
	Prediction: Calculating ranking r(user1,item3)
	Slide 22
	(Some more) Recommender Systems (ISH)
	Association rules
	Format of Association Rules
	Association Rules: Basic Concepts
	Association Rules: Basic Concepts
	Association Rules: Basic Concepts
	Association Rules in Practice
	Scaling it Up: Big Data & MapReduce
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	An Example Program
	Map? Reduce?
	MapReduce vs Hadoop
	Major Components
	Key Notes
	Basic Concepts
	Data Flow
	Input Splitter
	Mapper
	Reducer
	Combiner
	Output Committer
	Partitioner (Shuffler)
	Master
	Mapreduce in python
	Mapreduce in python
	Mapreduce?
	Slide 55

