
INTRODUCTION TO 
DATA SCIENCE
SLIDES: JPD + JMCT

Lecture #23 – 04/26/2021



2

FILLING IN THE GAPS:
NONLINEAR REGRESSION & REGULARIZATION

Thanks: Zico Kolter
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combinations_with_replacement(p,r):
r-length tuples, in sorted order, with replacement
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K-FOLDS CROSS 
VALIDATION

Cross Validation is good!

Let’s do more of it!

1. Split dataset into ‘k’ folks (usually 5-10)

2. Fit your model using k-1 of the folds

3. Validate the model using the kth fold (remember your 
error)

4. Repeat 2+3, changing with of the folds is used for 
validation

5. Average of the errors 
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K-FOLDS CROSS 
VALIDATION

Some things to consider:

1.  What we’ve described is “leave one out” (LOO) CV

– There is also “Leave P Out”

– LOO let’s you train the model ‘better’ but have fewer 
tests. LPO better tests but if it’s a steep learning 
curve, you might overestimate the error (maybe that’s 
not bad)

2. Random sampling can be bad (what about class labels)

– StratifiedKFold helps you ensure that each fold as a 
similar proportion of various class labels
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K-FOLDS CROSS 
VALIDATION

This may surprise you:

1.  What we’ve described is “leave one out” (LOO) CV

– There is also “Leave P Out”

– LOO let’s you train the model ‘better’ but have fewer 
tests. LPO better tests but if it’s a steep learning 
curve, you might overestimate the error (maybe that’s 
not bad)

2. Random sampling can be bad (what about class labels)

– StratifiedKFold helps you ensure that each fold as a 
similar proportion of various class labels
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SUPPORT VECTOR 
MACHINES (SVM)

Linear Regressions are great, but some times we don’t want 
a ‘predictive’ line. Sometimes we want a dividing line

1. Idea is to find the hyperplane that best divides the 
dataset

2. If Linear Regressions can be thought of as statistical, 
SVMs are geometric

3. Good for ‘medium’ sized datasets (low 10’s of thousands)

4. Has classification (SVC) and regression (SVR) variants

5. SKLearn has implementations!
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● The learning algorithms we’ve discussed so far have been 
supervised

● But what if you don’t have a tagged dataset?

LOSING SUPERVISION
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UNSUPERVISED LEARNING

Input features:

Model parameters:

Hypothesis function:                                 ??????????????

Want: approximate input given input, or

Loss function:
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K-MEANS

Non-convex optimization problem  locally good solutions

Given: dataset x(i), number of clusters k

Initialize k cluster centers:

Repeat until convergence or bored:

1. Compute cluster assignments:

2. Re-compute the new cluster means:
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A (LUCKY) EXAMPLE
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A (LUCKY) EXAMPLE
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A (LUCKY) EXAMPLE
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NEXT CLASS:
DIMENSIONALITY REDUCTION

5
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Thanks to: Zico Kolter



PRINCIPAL COMPONENT 
ANALYSIS (PCA)

So you’ve measured lots of features …

• Overfitting, interpretability issues, visualization, computation

Principal component analysis (PCA) does this by preserving 
the axis of major variation in the data:

5
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Can we combine raw features into new features that 
yield a simpler description of the same system?

Images: Zico Kolter



PRINCIPAL COMPONENT 
ANALYSIS (PCA)

Assume: data is normalized      ??????????

• Zero mean, unit (= 1) variance

Hypothesis function:

• First multiply input by low rank matrix W (“compress” it), then 
map back into the initial space using U

Loss function: squared distance (like k-means)

Optimization problem:

5
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PRINCIPAL COMPONENT 
ANALYSIS (PCA)

Dimensionality reduction: main use of PCA for data science 
applications

If                                 , then                      is a reduced (probably 
with some loss) representation of input features x
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PRINCIPAL COMPONENT 
ANALYSIS (PCA)

PCA optimization problem is non-convex      ???????????

We can solve the problem exactly using the singular value 
decomposition (SVD):

• Factorize matrix M = U Σ VT        (also used to approximate)

6
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m x n ≈

UM Σ VT

m x r

r x nr x r

CMSC422
MATH240



PRINCIPAL COMPONENT 
ANALYSIS (PCA)

Solving PCA exactly using the SVD:

1. Normalize input data, pick #components k

2. Compute (exact) SVD of X = U Σ VT 

3. Return:

• U = V:,1:k Σ-1
1:k,1:k

• W = VT
:,1:k

Loss is 
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PCA IN PYTHON

Can roll your own PCA easily (assuming a call to SVD via 
SciPy or similar) …

… or just use Scikit-Learn:
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from sklearn.decomposition import PCA

X=np.array([[-1,-1],[-2,-1],[-3,-2],[1,1],[2,1],[3,2]])

# Fit PCA with 2 components (i.e., two final features)
pca = PCA(n_components=2)
pca.fit(X)
print(pca.explained_variance_ratio_) 

[ 0.99244... 0.00755...]

Looks like our data basically sit on a line 



HOW TO USE PCA & FRIENDS IN 
PRACTICE
Unsupervised learning methods are useful for EDA

• Cluster or reduce to a few dimensions and visualize!

Also useful as data prep before supervised learning!

1. Run PCA, get W matrix

2. Transform                               – (reduce colinearity, dimension)

3. Train and test your favorite supervised classifier

Or use k-means to set up radial basis functions (RBFs):

4. Get k centers 

5. Create RBF features 
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RECOMMENDER SYSTEMS & 
COLLABORATIVE FILTERING 6
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NETFLIX PRIZE

Recommender systems: predict a user’s rating of an item

Netflix Prize: $1MM to the first team that beats our in-house 
engine by 10%

• Happened after about three years

• Model was never used by Netflix for a variety of reasons

• Out of date (DVDs vs streaming)
• Too complicated / not interpretable
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Twilight Wall-E Twilight II TFotF

User 1 +1 -1 +1 ?

User 2 +1 -1 ? ?

User 3 -1 +1 -1 +1



RECOMMENDER 
SYSTEMS

Recommender systems feel like:

• Supervised learning (we know the user watched some movies, 
so these are like labels)

• Unsupervised learning (we want to find latent structure, e.g., 
genres of movies)

They fall somewhere in between, in “Information Filtering” or 
Information Retrieval” …

• … but we can still just phrase the problem in terms of 
hypothesis classes, loss functions, and optimization problems
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PREDICTION
Pure user information:

• Age

• Location

• Profession/Salary

Pure item information:

• Movie budget

• Main actors

• Is it a Netflix release?

User-item information:

• Which items are most similar to those I’ve watched before?

• Which users are most similar to me, and what did they watch?
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COLLABORATIVE 
FILTERING
Collaborative filtering (CF): recommender systems that 
predict based only on the expressed preferences of other 
users for an item

6
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i1 i2 i3 i4

u1 1 3

u2 2 5

u3 3 5

u4 4 4

X = 
Rows are users

Cols are items



MATRIX VIEW
Goal: “fill in” the matrix

The matrix is sparse, but the empty cells are not (necessarily) 
zero!
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i1 i2 i3 i4

u1 1 ? ? 3

u2 ? 2 5 ?

u3 ? 3 ? 5

u4 4 ? 4 ?



APPROACHES TO CF

User-user:

• Find users who look like me – based on items that we’ve both 
rated

• Predict scores for my unrated items as average of those users

Item-item:

• Find similar items (based on scores from all users who have 
rated), predict scores for other users based off this

Matrix factorization:

• Find a low-rank decomposition of X that agrees (exactly, 
approximately) at the observed values
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APPROACH #1: ITEM-BASED CF EX: 
INFER (USER 1, ITEM 3)

Item 1 Item 2 Item 3 Item 4 Item 5

User 1 8 1 ? 2 7

User 2 2 ? 5 7 5

User 3 5 4 7 4 7

User 4 7 1 7 3 8

User 5 1 7 4 6 ?
User 6 8 3 8 3 7

Example due to Qiang Yang [HKUST] 7
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HOW TO CALCULATE SIMILARITY 
(ITEMS 3 AND 5)?

Item 1 Item 2 Item 3 Item 4 Item 5

User 1 8 1 ? 2 7

User 2 2 ? 5 7 5

User 3 5 4 7 4 7

User 4 7 1 7 3 8

User 5 1 7 4 6 ?
User 6 8 3 8 3 7

7
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Example due to Qiang Yang [HKUST]



SIMILARITY BETWEEN ITEMS
Item 3 Item 4 Item 5

? 2 7

5 7 5

7 4 7

7 3 8

4 6 ?
8 3 7

How should we 
calculate the 
similarity between 
two items (e.g., 
items 3 and 5)?

We’ve done this 
before in a 
different context!
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SIMILARITY BETWEEN ITEMS
Item 3 Item 5

? 7

5 5

7 7

7 8

4 ?
8 7

Only consider users (i.e., rows) 
who have rated both items (i.e., 
non-empty)
One approach: For each user: 

Calculate difference in ratings 
for the

two items
Take the average of this 

difference
over the users

Another approach: cosine 
similarity!

Can also use Pearson Correlation 
Coefficients (also in user-user 
approach) 

 sim(item 3, item 5)  = cosine( (5, 7, 7, 8), (5, 
7, 8, 7) )

= (5*5 + 7*7 + 7*8 + 8*7)/(sqrt(52+72+72+82)* 
sqrt(52+72+82+72))
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PREDICTION: CALCULATING RANKING 
R(USER1,ITEM3)

Item 
3

2

1
8

7
Item 

5

Item 
4

Item 
2

Item 
1

Where a is a normalization factor, which is
1/[the sum of all sim(itemi,item3)].
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APPROACH #2: CF VIA MATRIX 
FACTORIZATION

Want: all entries i, j of ratings matrix

Idea: approximate as  

• User-specific weights

• Item-specific weights

Hypothesis function:       ???????????

Loss function: least squares on observed entries

Optimization problem:      (S is observed entries)
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OPTIMIZATION FOR CF
Matrix factorization is non-convex; we won’t go for perfect

Consider the objective w.r.t. a single term ui: 

Just a least squares problem!  Analytic solution (from earlier):

Idea (not optimal): repeatedly solve for all ui, vj until converged or 
bored
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WHAT ARE WE DOING?

Factorizing the ratings matrix X as

with

 

But we are only penalizing mismatches between UV and X at 
the observed entries in X
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ISN’T THIS JUST PCA?

PCA also performs a factorization

• Or more precisely

In PCA, all entries are observed (or imputed beforehand)

Simplifies the solution to PCA (which we can solve exactly 
via the SVD) versus CF via matrix factorization (which we 
cannot) 
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(SOME MORE)
RECOMMENDER SYSTEMS (ISH) 8
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ASSOCIATION RULES

Last time: CF systems give predictions based on other users’ 
scores of the same item

Complementary idea: Find rules that associate the presence 
of one set of items with that of another set of items

8
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FORMAT OF 
ASSOCIATION RULES
Typical Rule form: 

• Body  Head 

• Body and Head can be represented as sets of items (in transaction data) or as 
conjunction of predicates (in relational data)

• Support and Confidence

• Usually reported along with the rules
• Metrics that indicate the strength of the item associations

Examples:

• {diaper, milk}  {beer} [support: 0.5%, confidence: 78%]

• buys(x, "bread") /\ buys(x, “eggs")  buys(x, "milk") [sup: 0.6%, conf: 65%]

• major(x, "CS") /\ takes(x, "DB")  grade(x, "A") [1%, 75%]

• age(x,30-45) /\ income(x, 50K-75K)  owns(x, SUV)

• age=“30-45”, income=“50K-75K”  car=“SUV”

Thanks to: Bamshad Mobasher
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ASSOCIATION RULES: 
BASIC CONCEPTS
Let D be database of transactions

Let I be the set of items that appear in the database:

• e.g., I = {A, B, C, D, E, F}

Each transaction t is a subset of I

A rule is an implication among itemsets X and Y, of the form by X  Y, 
where X  I, Y  I, and X  Y= 

• e.g.: {B,C}  {A}

 8
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Transaction ID Items

1000 A, B, C

2000 A, B

3000 A, D

4000 B, E, F

Thanks to: Bamshad Mobasher



Customer
buys 
diaper

Customer
buys both

Customer
buys beer

ASSOCIATION RULES: 
BASIC CONCEPTS
Itemset

• A set of one or more items

• E.g.: {Milk, Bread, Diaper}
• k-itemset

• An itemset that contains k items

Support count ()

• Frequency of occurrence of an itemset (number of 
transactions in which it appears)

• E.g.   ({Milk, Bread,Diaper}) = 2 

Support

• Fraction of the transactions in which an itemset appears

• E.g.   s({Milk, Bread, Diaper}) = 2/5

Frequent Itemset

• An itemset whose support is greater than or equal to a 
minsup threshold

8
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TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  

 



Example:

ASSOCIATION RULES: 
BASIC CONCEPTS
Association Rule

• X  Y, where X and Y are non-
overlapping itemsets

• {Milk, Diaper}  {Beer} 

Rule Evaluation Metrics

• Support (s)

• Fraction of transactions that contain both 
X and Y

• i.e., support of the itemset X  Y
• Confidence (c)

• Measures how often items in Y 
appear in transactions that
contain X

8
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Beer}Diaper,Milk{ 

4.0
5

2

|D|

)BeerDiaper,,Milk(



s

67.0
3
2

)Diaper,Milk(
)BeerDiaper,Milk,(





c

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  
 



Another interpretation of support and confidence for X   Y

– Support is the probability that a transaction contains {X  
Y} or Pr(X /\ Y)

– Confidence is the conditional probability  that a 
transaction will contains Y given that it contains X or  Pr(Y 
| X) confidence(X  Y)  =  (X  Y) / (X)

                                =  support(X  Y) / support(X)

support(X  Y) = support(X  Y)  = (X  Y) / |D|

ASSOCIATION RULES: 
INTERESTINGNESS

8
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ASSOCIATION RULES:
INTERESTINGNESS

Other considerations of how interesting a rule is:

If lift is equal to 1       ??????????

• Body X and Head Y are independent

If lift is greater than 1      ?????????

• Body X and Head Y are in some sense dependent

Conviction measures frequency of X and Y occurring 
together, vs. how frequently X occurs but not Y

Many others …

8
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ASSOCIATION RULES IN 
PRACTICE

Orange3 is a {GUI, Python API, …} that:

• Enumerates frequent itemsets

• Performs association rule mining

• (Wrapper calls to, shared functionality with, Scikit-Learn)

conda install –c ales-erjavec orange3
More information: 
https://blog.biolab.si/2016/04/25/association-rules-in-orange/

In general:

• Can be useful for interpretable, fast data mining

• Typically doesn’t consider order, scalability issues …

8
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https://blog.biolab.si/2016/04/25/association-rules-in-orange/
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