
INTRODUCTION TO
DATA SCIENCE
SLIDES: JPD + JMCT

Lecture #23 – 04/26/2021

2

FILLING IN THE GAPS:
NONLINEAR REGRESSION & REGULARIZATION

Thanks: Zico Kolter

3

4

5

6

7

8

9

1
0

11

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

combinations_with_replacement(p,r):
r-length tuples, in sorted order, with replacement

2
7

2
8

K-FOLDS CROSS
VALIDATION

Cross Validation is good!

Let’s do more of it!

1. Split dataset into ‘k’ folks (usually 5-10)

2. Fit your model using k-1 of the folds

3. Validate the model using the kth fold (remember your
error)

4. Repeat 2+3, changing with of the folds is used for
validation

5. Average of the errors

2
9

K-FOLDS CROSS
VALIDATION

Some things to consider:

1. What we’ve described is “leave one out” (LOO) CV

– There is also “Leave P Out”

– LOO let’s you train the model ‘better’ but have fewer
tests. LPO better tests but if it’s a steep learning
curve, you might overestimate the error (maybe that’s
not bad)

2. Random sampling can be bad (what about class labels)

– StratifiedKFold helps you ensure that each fold as a
similar proportion of various class labels

3
0

K-FOLDS CROSS
VALIDATION

This may surprise you:

1. What we’ve described is “leave one out” (LOO) CV

– There is also “Leave P Out”

– LOO let’s you train the model ‘better’ but have fewer
tests. LPO better tests but if it’s a steep learning
curve, you might overestimate the error (maybe that’s
not bad)

2. Random sampling can be bad (what about class labels)

– StratifiedKFold helps you ensure that each fold as a
similar proportion of various class labels

3
1

SUPPORT VECTOR
MACHINES (SVM)

Linear Regressions are great, but some times we don’t want
a ‘predictive’ line. Sometimes we want a dividing line

1. Idea is to find the hyperplane that best divides the
dataset

2. If Linear Regressions can be thought of as statistical,
SVMs are geometric

3. Good for ‘medium’ sized datasets (low 10’s of thousands)

4. Has classification (SVC) and regression (SVR) variants

5. SKLearn has implementations!

3
2

3
3

3
4

3
5

3
6

● The learning algorithms we’ve discussed so far have been
supervised

● But what if you don’t have a tagged dataset?

LOSING SUPERVISION

3
8

3
9

4
0

UNSUPERVISED LEARNING

Input features:

Model parameters:

Hypothesis function: ??????????????

Want: approximate input given input, or

Loss function:

4
1

4
2

4
3

4
4

K-MEANS

Non-convex optimization problem locally good solutions

Given: dataset x(i), number of clusters k

Initialize k cluster centers:

Repeat until convergence or bored:

1. Compute cluster assignments:

2. Re-compute the new cluster means:

4
5

4
6

A (LUCKY) EXAMPLE

4
7

A (LUCKY) EXAMPLE

4
8

A (LUCKY) EXAMPLE

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

NEXT CLASS:
DIMENSIONALITY REDUCTION

5
7

Thanks to: Zico Kolter

PRINCIPAL COMPONENT
ANALYSIS (PCA)

So you’ve measured lots of features …

• Overfitting, interpretability issues, visualization, computation

Principal component analysis (PCA) does this by preserving
the axis of major variation in the data:

5
8

Can we combine raw features into new features that
yield a simpler description of the same system?

Images: Zico Kolter

PRINCIPAL COMPONENT
ANALYSIS (PCA)

Assume: data is normalized ??????????

• Zero mean, unit (= 1) variance

Hypothesis function:

• First multiply input by low rank matrix W (“compress” it), then
map back into the initial space using U

Loss function: squared distance (like k-means)

Optimization problem:

5
9

PRINCIPAL COMPONENT
ANALYSIS (PCA)

Dimensionality reduction: main use of PCA for data science
applications

If , then is a reduced (probably
with some loss) representation of input features x

6
0

PRINCIPAL COMPONENT
ANALYSIS (PCA)

PCA optimization problem is non-convex ???????????

We can solve the problem exactly using the singular value
decomposition (SVD):

• Factorize matrix M = U Σ VT (also used to approximate)

6
1

m x n ≈

UM Σ VT

m x r

r x nr x r

CMSC422
MATH240

PRINCIPAL COMPONENT
ANALYSIS (PCA)

Solving PCA exactly using the SVD:

1. Normalize input data, pick #components k

2. Compute (exact) SVD of X = U Σ VT

3. Return:

• U = V:,1:k Σ-1
1:k,1:k

• W = VT
:,1:k

Loss is

6
2

CMSC422
MATH240

PCA IN PYTHON

Can roll your own PCA easily (assuming a call to SVD via
SciPy or similar) …

… or just use Scikit-Learn:

6
3

from sklearn.decomposition import PCA

X=np.array([[-1,-1],[-2,-1],[-3,-2],[1,1],[2,1],[3,2]])

Fit PCA with 2 components (i.e., two final features)
pca = PCA(n_components=2)
pca.fit(X)
print(pca.explained_variance_ratio_)

[0.99244... 0.00755...]

Looks like our data basically sit on a line

HOW TO USE PCA & FRIENDS IN
PRACTICE
Unsupervised learning methods are useful for EDA

• Cluster or reduce to a few dimensions and visualize!

Also useful as data prep before supervised learning!

1. Run PCA, get W matrix

2. Transform – (reduce colinearity, dimension)

3. Train and test your favorite supervised classifier

Or use k-means to set up radial basis functions (RBFs):

4. Get k centers

5. Create RBF features

6
4

RECOMMENDER SYSTEMS &
COLLABORATIVE FILTERING 6
5

NETFLIX PRIZE

Recommender systems: predict a user’s rating of an item

Netflix Prize: $1MM to the first team that beats our in-house
engine by 10%

• Happened after about three years

• Model was never used by Netflix for a variety of reasons

• Out of date (DVDs vs streaming)
• Too complicated / not interpretable

6
6

Twilight Wall-E Twilight II TFotF

User 1 +1 -1 +1 ?

User 2 +1 -1 ? ?

User 3 -1 +1 -1 +1

RECOMMENDER
SYSTEMS

Recommender systems feel like:

• Supervised learning (we know the user watched some movies,
so these are like labels)

• Unsupervised learning (we want to find latent structure, e.g.,
genres of movies)

They fall somewhere in between, in “Information Filtering” or
Information Retrieval” …

• … but we can still just phrase the problem in terms of
hypothesis classes, loss functions, and optimization problems

6
7

PREDICTION
Pure user information:

• Age

• Location

• Profession/Salary

Pure item information:

• Movie budget

• Main actors

• Is it a Netflix release?

User-item information:

• Which items are most similar to those I’ve watched before?

• Which users are most similar to me, and what did they watch?

6
8

COLLABORATIVE
FILTERING
Collaborative filtering (CF): recommender systems that
predict based only on the expressed preferences of other
users for an item

6
9

i1 i2 i3 i4

u1 1 3

u2 2 5

u3 3 5

u4 4 4

X =
Rows are users

Cols are items

MATRIX VIEW
Goal: “fill in” the matrix

The matrix is sparse, but the empty cells are not (necessarily)
zero!

7
0

i1 i2 i3 i4

u1 1 ? ? 3

u2 ? 2 5 ?

u3 ? 3 ? 5

u4 4 ? 4 ?

APPROACHES TO CF

User-user:

• Find users who look like me – based on items that we’ve both
rated

• Predict scores for my unrated items as average of those users

Item-item:

• Find similar items (based on scores from all users who have
rated), predict scores for other users based off this

Matrix factorization:

• Find a low-rank decomposition of X that agrees (exactly,
approximately) at the observed values

7
1

APPROACH #1: ITEM-BASED CF EX:
INFER (USER 1, ITEM 3)

Item 1 Item 2 Item 3 Item 4 Item 5

User 1 8 1 ? 2 7

User 2 2 ? 5 7 5

User 3 5 4 7 4 7

User 4 7 1 7 3 8

User 5 1 7 4 6 ?
User 6 8 3 8 3 7

Example due to Qiang Yang [HKUST] 7
2

HOW TO CALCULATE SIMILARITY
(ITEMS 3 AND 5)?

Item 1 Item 2 Item 3 Item 4 Item 5

User 1 8 1 ? 2 7

User 2 2 ? 5 7 5

User 3 5 4 7 4 7

User 4 7 1 7 3 8

User 5 1 7 4 6 ?
User 6 8 3 8 3 7

7
3

Example due to Qiang Yang [HKUST]

SIMILARITY BETWEEN ITEMS
Item 3 Item 4 Item 5

? 2 7

5 7 5

7 4 7

7 3 8

4 6 ?
8 3 7

How should we
calculate the
similarity between
two items (e.g.,
items 3 and 5)?

We’ve done this
before in a
different context!

7
4

SIMILARITY BETWEEN ITEMS
Item 3 Item 5

? 7

5 5

7 7

7 8

4 ?
8 7

Only consider users (i.e., rows)
who have rated both items (i.e.,
non-empty)
One approach: For each user:

Calculate difference in ratings
for the

two items
Take the average of this

difference
over the users

Another approach: cosine
similarity!

Can also use Pearson Correlation
Coefficients (also in user-user
approach)

 sim(item 3, item 5) = cosine((5, 7, 7, 8), (5,
7, 8, 7))

= (5*5 + 7*7 + 7*8 + 8*7)/(sqrt(52+72+72+82)*
sqrt(52+72+82+72))

7
5

PREDICTION: CALCULATING RANKING
R(USER1,ITEM3)

Item
3

2

1
8

7
Item

5

Item
4

Item
2

Item
1

Where a is a normalization factor, which is
1/[the sum of all sim(itemi,item3)].

7
6

)},(),(

),(),(

),(),(

),(),({*),(

3551

3441

3221

311131

itemitemsimitemuserr

itemitemsimitemuserr

itemitemsimitemuserr

itemitemsimitemuserritemuserr

a

APPROACH #2: CF VIA MATRIX
FACTORIZATION

Want: all entries i, j of ratings matrix

Idea: approximate as

• User-specific weights

• Item-specific weights

Hypothesis function: ???????????

Loss function: least squares on observed entries

Optimization problem: (S is observed entries)

7
7

OPTIMIZATION FOR CF
Matrix factorization is non-convex; we won’t go for perfect

Consider the objective w.r.t. a single term ui:

Just a least squares problem! Analytic solution (from earlier):

Idea (not optimal): repeatedly solve for all ui, vj until converged or
bored

7
8

WHAT ARE WE DOING?

Factorizing the ratings matrix X as

with

But we are only penalizing mismatches between UV and X at
the observed entries in X

7
9

ISN’T THIS JUST PCA?

PCA also performs a factorization

• Or more precisely

In PCA, all entries are observed (or imputed beforehand)

Simplifies the solution to PCA (which we can solve exactly
via the SVD) versus CF via matrix factorization (which we
cannot)

8
0

(SOME MORE)
RECOMMENDER SYSTEMS (ISH) 8
1

ASSOCIATION RULES

Last time: CF systems give predictions based on other users’
scores of the same item

Complementary idea: Find rules that associate the presence
of one set of items with that of another set of items

8
2

FORMAT OF
ASSOCIATION RULES
Typical Rule form:

• Body Head

• Body and Head can be represented as sets of items (in transaction data) or as
conjunction of predicates (in relational data)

• Support and Confidence

• Usually reported along with the rules
• Metrics that indicate the strength of the item associations

Examples:

• {diaper, milk} {beer} [support: 0.5%, confidence: 78%]

• buys(x, "bread") /\ buys(x, “eggs") buys(x, "milk") [sup: 0.6%, conf: 65%]

• major(x, "CS") /\ takes(x, "DB") grade(x, "A") [1%, 75%]

• age(x,30-45) /\ income(x, 50K-75K) owns(x, SUV)

• age=“30-45”, income=“50K-75K” car=“SUV”

Thanks to: Bamshad Mobasher

8
3

ASSOCIATION RULES:
BASIC CONCEPTS
Let D be database of transactions

Let I be the set of items that appear in the database:

• e.g., I = {A, B, C, D, E, F}

Each transaction t is a subset of I

A rule is an implication among itemsets X and Y, of the form by X Y,
where X I, Y I, and X Y=

• e.g.: {B,C} {A}

 8
4

Transaction ID Items

1000 A, B, C

2000 A, B

3000 A, D

4000 B, E, F

Thanks to: Bamshad Mobasher

Customer
buys
diaper

Customer
buys both

Customer
buys beer

ASSOCIATION RULES:
BASIC CONCEPTS
Itemset

• A set of one or more items

• E.g.: {Milk, Bread, Diaper}
• k-itemset

• An itemset that contains k items

Support count ()

• Frequency of occurrence of an itemset (number of
transactions in which it appears)

• E.g. ({Milk, Bread,Diaper}) = 2

Support

• Fraction of the transactions in which an itemset appears

• E.g. s({Milk, Bread, Diaper}) = 2/5

Frequent Itemset

• An itemset whose support is greater than or equal to a
minsup threshold

8
5

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

Example:

ASSOCIATION RULES:
BASIC CONCEPTS
Association Rule

• X Y, where X and Y are non-
overlapping itemsets

• {Milk, Diaper} {Beer}

Rule Evaluation Metrics

• Support (s)

• Fraction of transactions that contain both
X and Y

• i.e., support of the itemset X Y
• Confidence (c)

• Measures how often items in Y
appear in transactions that
contain X

8
6

Beer}Diaper,Milk{

4.0
5

2

|D|

)BeerDiaper,,Milk(

s

67.0
3
2

)Diaper,Milk(
)BeerDiaper,Milk,(

c

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

Another interpretation of support and confidence for X Y

– Support is the probability that a transaction contains {X
Y} or Pr(X /\ Y)

– Confidence is the conditional probability that a
transaction will contains Y given that it contains X or Pr(Y
| X) confidence(X Y) = (X Y) / (X)

 = support(X Y) / support(X)

support(X Y) = support(X Y) = (X Y) / |D|

ASSOCIATION RULES:
INTERESTINGNESS

8
7

ASSOCIATION RULES:
INTERESTINGNESS

Other considerations of how interesting a rule is:

If lift is equal to 1 ??????????

• Body X and Head Y are independent

If lift is greater than 1 ?????????

• Body X and Head Y are in some sense dependent

Conviction measures frequency of X and Y occurring
together, vs. how frequently X occurs but not Y

Many others …

8
8

ASSOCIATION RULES IN
PRACTICE

Orange3 is a {GUI, Python API, …} that:

• Enumerates frequent itemsets

• Performs association rule mining

• (Wrapper calls to, shared functionality with, Scikit-Learn)

conda install –c ales-erjavec orange3
More information:
https://blog.biolab.si/2016/04/25/association-rules-in-orange/

In general:

• Can be useful for interpretable, fast data mining

• Typically doesn’t consider order, scalability issues …

8
9

https://blog.biolab.si/2016/04/25/association-rules-in-orange/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Unsupervised Learning
	Slide 42
	Slide 43
	Slide 44
	K-Means
	Slide 46
	A (Lucky) example
	A (Lucky) example
	A (Lucky) Example
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Dimensionality reduction
	Principal Component Analysis (PCA)
	Principal Component Analysis (PCA)
	Principal Component Analysis (PCA)
	Principal Component Analysis (PCA)
	Principal Component Analysis (PCA)
	PCA in Python
	How to use PCA & Friends in practice
	Recommender Systems & Collaborative filtering
	Netflix Prize
	Recommender Systems
	Prediction
	Collaborative filtering
	Matrix view
	Approaches to CF
	Approach #1: Item-based CF Ex: infer (user 1, item 3)
	How to Calculate Similarity (ItemS 3 and 5)?
	Similarity between Items
	Similarity between items
	Prediction: Calculating ranking r(user1,item3)
	Approach #2: CF via Matrix factorization
	Optimization for CF
	What are we doing?
	Isn’t this just PCA?
	(Some more) Recommender Systems (ISH)
	Association rules
	Format of Association Rules
	Association Rules: Basic Concepts
	Association Rules: Basic Concepts
	Association Rules: Basic Concepts
	Association Rules: Interestingness
	Association Rules: Interestingness
	Association Rules in Practice

