Natural Language

Processing

Data Science, Spring 2021

1. Our mod of the day.

- 1. Our mod of the day.
- 2. Project 1

- 1. Our mod of the day.
- 2. Project 1
- 3. Project 2

- 1. Our mod of the day.
- 2. Project 1
- **3.** Project 2
- 4. Midterm

Our moderator

Our moderator

1. Julian!

1. Grading is almost done, I will be posting official mid-semester grades.

- 1. Grading is almost done, I will be posting official mid-semester grades.
- 2. Regrades are case-by-case. I mostly defer to the TAs so there must be a very compelling issue.

¹Notice the timezone

1. You can use SQL and Pandas, it doesn't have to all be SQL (might be impossible?)

¹Notice the timezone

- 1. You can use SQL and Pandas, it doesn't have to all be SQL (might be impossible?)
- 2. Plots:

¹Notice the timezone

- 1. You can use SQL and Pandas, it doesn't have to all be SQL (might be impossible?)
- 2. Plots:
 - 2.1 You don't need N-plots for N distributions!

¹Notice the timezone

- 1. You can use SQL and Pandas, it doesn't have to all be SQL (might be impossible?)
- 2. Plots:
 - 2.1 You don't need N-plots for N distributions!
 - 2.2 Look up box-and-whisker plots.

¹Notice the timezone

- 1. You can use SQL and Pandas, it doesn't have to all be SQL (might be impossible?)
- 2. Plots:
 - 2.1 You don't need N-plots for N distributions!
 - 2.2 Look up box-and-whisker plots.
- 3. Nothing will be accepted after 11:59 pm EDT¹

¹Notice the timezone

Midterm

Midterm

1. Like the quizzes, but significantly more difficult.

Midterm

- 1. Like the quizzes, but significantly more difficult.
- 2. Last semester's exam is up on the website.

Part I: What.

What is it? 1. 'Understanding' text

- 1. 'Understanding' text
- 2. Analyzing text

- 1. 'Understanding' text
- 2. Analyzing text
- 3. Translating text

- 1. 'Understanding' text
- 2. Analyzing text
- 3. Translating text
- 4. and more!

Computation was very expensive, so computationally cheap methods were preferred

Computation was very expensive, so computationally cheap methods were preferred

1. Dictionary lookup for translation: replace a word in one language with it's 'equivalent' in another language.

Computation was very expensive, so computationally cheap methods were preferred

- 1. Dictionary lookup for translation: replace a word in one language with it's 'equivalent' in another language.
- 2. This didn't get very far.

Computation was very expensive, so computationally cheap methods were preferred

- 1. Dictionary lookup for translation: replace a word in one language with it's 'equivalent' in another language.
- 2. This didn't get very far.
- 3. Between the 1930's and the 1980's, not much work was done on mechanical translation

Two main schools of thought:

Two main schools of thought:

1. Rule + Grammar-based methods

Two main schools of thought:

- 1. Rule + Grammar-based methods
- 2. Statistical methods

Two main schools of thought:

- 1. Rule + Grammar-based methods
- 2. Statistical methods

These two schools of thought go up and down in popularity.

Rule and Grammar-based methods

Let's use linguistics to formally reason about language.

Rule and Grammar-based methods

Let's use linguistics to formally reason about language. 1. Phonetics

- 1. Phonetics
- 2. Phonology

- 1. Phonetics
- 2. Phonology
- 3. Morphology

- 1. Phonetics
- 2. Phonology
- 3. Morphology
- 4. Syntax

- 1. Phonetics
- 2. Phonology
- 3. Morphology
- 4. Syntax
- 5. Semantics

- 1. Phonetics
- 2. Phonology
- **3**. Morphology
- 4. Syntax
- 5. Semantics
- 6. Pragmatics

- 1. Phonetics
- 2. Phonology
- **3**. Morphology
- 4. Syntax
- 5. Semantics
- 6. Pragmatics
- 7. Discourse analysis

- 1. Phonetics
- 2. Phonology
- 3. Morphology
- 4. Syntax
- 5. Semantics
- 6. Pragmatics
- 7. Discourse analysis
- 8. Stylistics

- 1. Phonetics
- 2. Phonology
- **3**. Morphology
- 4. Syntax
- 5. Semantics
- 6. Pragmatics
- 7. Discourse analysis
- 8. Stylistics
- 9. Semiotics

Let's use linguistics to formally reason about language.

Sounds complicated... what if we just didn't do that?

Cynically: Through it at some ML techniques and see what happens.

Cynically: Through it at some ML techniques and see what happens.

1. Decisions tress to automatically learn rules automatically

Cynically: Through it at some ML techniques and see what happens.

- 1. Decisions tress to automatically learn rules automatically
- 2. Hidden Markov Models (HMM) for parts-of-speech tagging

Cynically: Through it at some ML techniques and see what happens.

- 1. Decisions tress to automatically learn rules automatically
- 2. Hidden Markov Models (HMM) for parts-of-speech tagging
- 3. (Un)supervised learning of language models (this is the hotness)

These two schools of thought go up and down in popularity.

Cynically: Through it at some ML techniques and see what happens.

- 1. Decisions tress to automatically learn rules automatically
- 2. Hidden Markov Models (HMM) for parts-of-speech tagging
- 3. (Un)supervised learning of language models (this is the hotness)
- 4. We will discuss some of these techniques in the Machine Learning part of the semester.

These methods reflect our biases:

Marcos Besteiro @MarcosBL

Hungarian has no gendered pronouns, so Google Translate makes some assumptions

					and a second	
🗙 Text 📄 Docume	nts					
UNGARIAN - DETECTED	POLISH	PO V +	+ ENGLISH	POLISH	PORTUGUESE	~
Ő szép. Ő okos. Ő olva épít. Ő varr. Ő tanít. Ő gyereket nevel. Ő zené politikus. Ő sok pénzt	főz. Ő kutat. I. Ő takarító. keres. Ő	Ő	She washe sews. He te researching	s the dishe eaches. Sh g. She is ra c. She's a c	clever. He reads. Is. He builds. She e cooks. He's ising a child. He cleaner. He is a	
süteményt süt. Ő profe asszisztens.				cake. He's	a lot of money. Sh a professor. She'	

These methods reflect our biases:

Berna Devezer @zerdeve				
OK I tried this in Turl without gendered pro pattern 😩				
Turkish 👻	$\stackrel{\rightarrow}{\leftarrow}$	English 👻		
Bulaşık yıkı araştırma y hazırlıyor. A Para kazanı dikiyor. O ç güzel.	rapıyor. Y Araba kul Iyor. Dikis	emek lanıyor. Ş	×	
			۲	
She is washing the dishes. He is doing scientific research. She is cooking, He drives car He's				

Part II: Why.

Some data scientists have it easy: their data is already in a machine friendly format (HTML/SQL Database/etc). But what about...

1. Facebook posts

- 1. Facebook posts
- 2. Product reviews

- 1. Facebook posts
- 2. Product reviews
- 3. data dumps (Panama Papers, wikileaks, etc.)

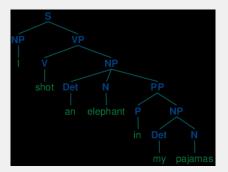
- 1. Facebook posts
- 2. Product reviews
- 3. data dumps (Panama Papers, wikileaks, etc.)
- 4. Can you think of other examples?

- 1. Facebook posts
- 2. Product reviews
- 3. data dumps (Panama Papers, wikileaks, etc.)
- 4. Can you think of other examples?
- 5. We want this data to be useful too!

Part III: How.

'Understanding' is hard

"One morning I shot an elephant in my pajamas."


'Understanding' is hard

"One morning I shot an elephant in my pajamas."

'Understanding' is hard

"One morning I shot an elephant in my pajamas."

"How he got in my pajamas, I'll never know"

'Understanding' is really hard

Winograd Schema Challenge: "The city councilmen refused the demonstrators a permit because they [feared/advocated] violence."

Understanding language directly is very hard. Perhaps understanding sentiment is less hard?

Sentiment

Understanding language directly is very hard. Perhaps understanding sentiment is less hard? "I bought this product and I use it, but I wouldn't recommend it to my worst enemy"

Sentiment

Understanding language directly is very hard. Perhaps understanding sentiment is less hard?

"It might seem like this movie is bad, but once you get past the cheesy acting I rather enjoyed it"

Summaries are also possible: SMMRY an algorithm for mechanical summaries

Thanks for your time!

:)