INTRODUCTION TO DATA SCIENCE

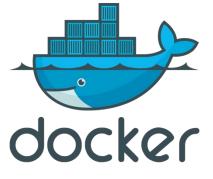
JOSÉ MANUEL CALDERÓN TRILLA (SLIDES BY JOHN P. DICKERSON)

Lecture #2 - 01/27/2020

CMSC320 Mondays & Wednesdays 5:00pm – 6:15pm (... or anytime on the Internet)

ANNOUNCEMENTS

Register on Discord:


- 110 have registered already \searrow
- The rest have not

If you were on Discord, you'd know ...

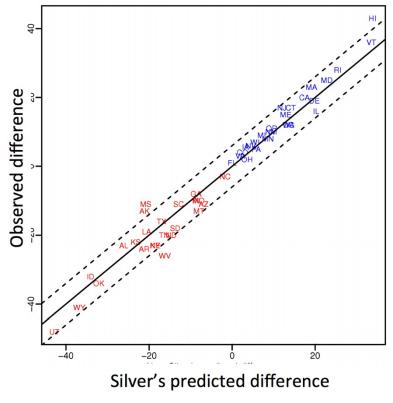
- **Project 0 is out!** It is "due" next Wednesday evening.
- Link: <u>https://github.com/cmsc320/spring2021/tree/main/project0</u>

We've also linked some reading for the week!

- First quiz will be due Monday at noon.
- Quiz will go up tomorrow (Thursday)

(A FEW) DATA SCIENCE SUCCESS STORIES & CAUTIONARY TALES

POLLING: 2008 & 2012


Nate Silver uses a simple idea – taking a principled approach to aggregating polling instead of relying on punditry – and:

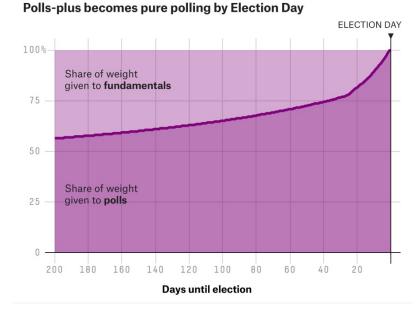
- Predicts 49/50 states in 2008
- Predicts 50/50 states in 2012

 (He is also a great case study in creating a brand.)

https://hbr.org/2012/11/how-nate-silverwon-the-2012-p

Democrat (+) or Republican (-) in 2012

POLLING: 2016


POLITICS

Nate Silver Is Unskewing Polls — All Of Them — In Trump's Direction

The vaunted 538 election forecaster is putting his thumb on the scales.

HuffPo: "He may end up being right, but he's just guessing. A "trend line adjustment" is merely political punditry dressed up as sophisticated mathematical modeling."

538: Offers quantitative reasoning for re-/under-weighting older polls, & changing as election approaches

http://www.huffingtonpost.com/entry/nate-silver-election-forecast_us_581e1c33e4b0d9ce6fbc6f7f https://fivethirtyeight.com/features/a-users-guide-to-fivethirtyeights-2016-general-election-forecast/

AD TARGETING

Pregnancy is an expensive & habit-forming time

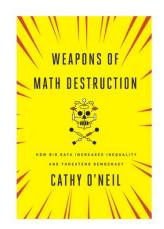
Thus, valuable to consumer-facing firms ۲

2012:

- Target identifies 25 products and subsets thereof that are commonly bought in early pregnancy
- Uses purchase history of patrons to predict pregnancy, • targets advertising for post-natal products (cribs, etc)
- Good: increased revenue •
- **Bad: this can expose pregnancies as famously** ۲ happened in Minneapolis to a high schooler

6

AUTOMATED DECISIONS OF CONSEQUENCE [Sweeney 2013, Miller 2015, Byrnes 2016, Rudin 2013, Barry-Jester et al. 2015]

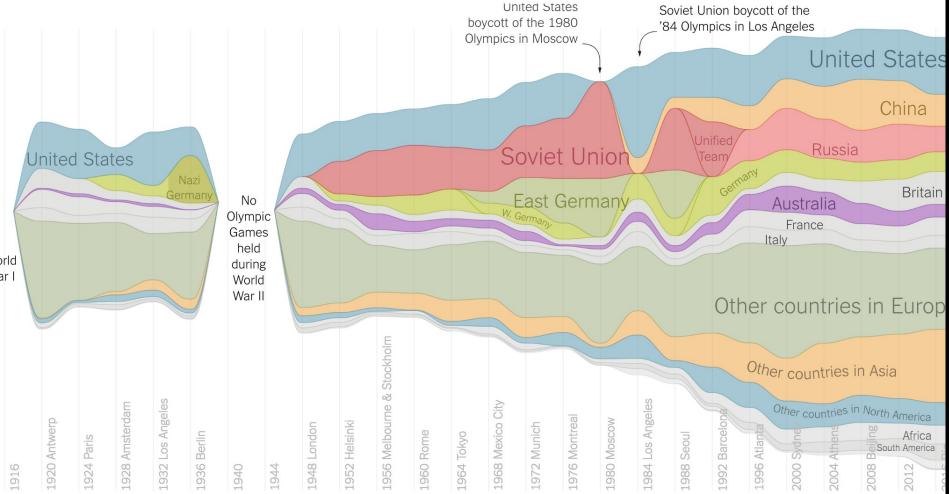

Hiring

Lending

Policing/ sentencing

Search for minority names ads for DUI/arrest records

Female cookies Semiconal job opening ads



"... a lot remains unknown about how big data-driven decisions may or may not use factors that are proxies for race, sex, or other traits that U.S. laws generally prohibit from being used in a wide range of commercial decisions ... What can be done to make sure these products and services—and the companies that use them treat consumers fairly and ethically?"

- FTC Commissioner Julie Brill [2015]

OLYMPIC MEDALS

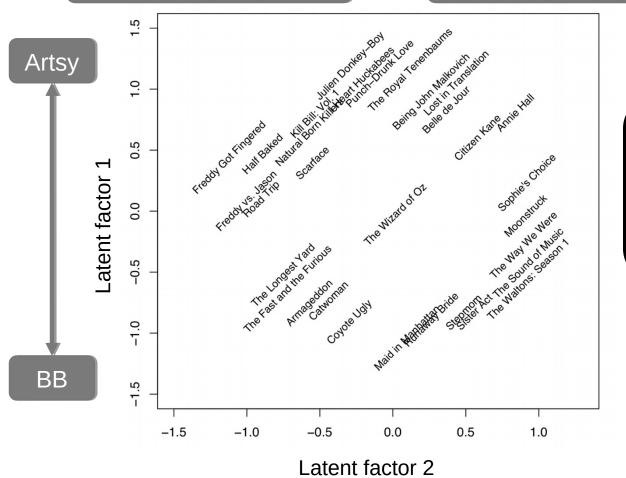
https://www.nytimes.com/interactive/2016/08/08/sports/olympics/history-olympic-dominance-charts.html

5

NETFLIX PRIZE I

Recommender systems: predict a user's rating of an item

	Twilight	Wall-E	Twilight II	Furious 7
User 1	+1	-1	+1	?
User 2	+1	-1	?	?
	-1	+1	-1	+1


Netflix Prize: \$1MM to the first team that beats our in-house engine by 10%

- Happened after about three years
- Model was never used by Netflix for a variety of reasons
 - Out of date (DVDs vs streaming)
 - Too complicated / not interpretable

NETFLIX PRIZE II

Frat/Gross-Out Comedy

Critically-Acclaimed/Strong Female Lead

Latent factors model:

Identify factors with max discrimination between movies

Image courtesy of Christopher Volinsky

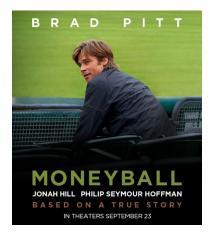
NETFLIX PRIZE III

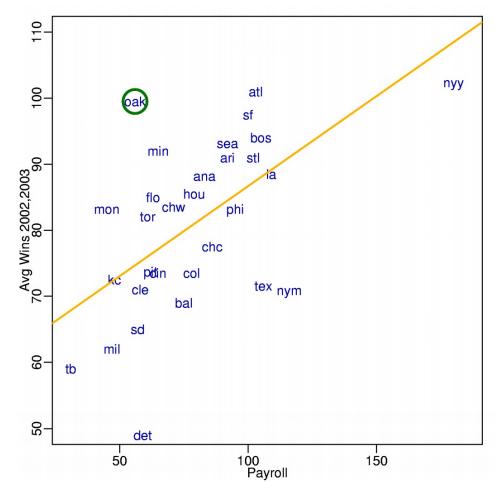
Netflix initially planned a follow-up competition

In 2007, UT Austin managed to deanonymize portions of the original released (anonymized) Netflix dataset:

- Matched rating against those made publicly on IMDb
 Why could this be bad?

2009—2010, four Netflix users filed a class-action lawsuit against Netflix over

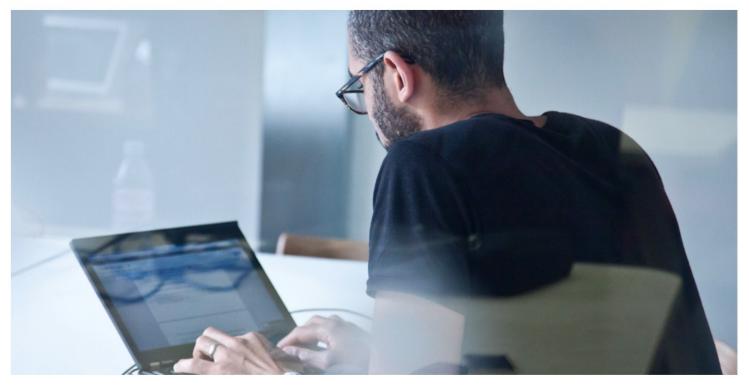

MONEYBALL


Baseball teams drafted rookie players primarily based on human scouts' opinions of their talents

Paul DePodesta, data scientist du jour, convinces the {bad, poor} Oakland Athletics to use a quantitative aka sabermetric approach to hiring

(Spoiler: Red Sox offer Brand a job, he says no, they take a sabermetric approach and win the World Series.)

(Spoiler #2: DePodesta is now GM for the Browns, who are extremely bad right now. We'll see what happens!)



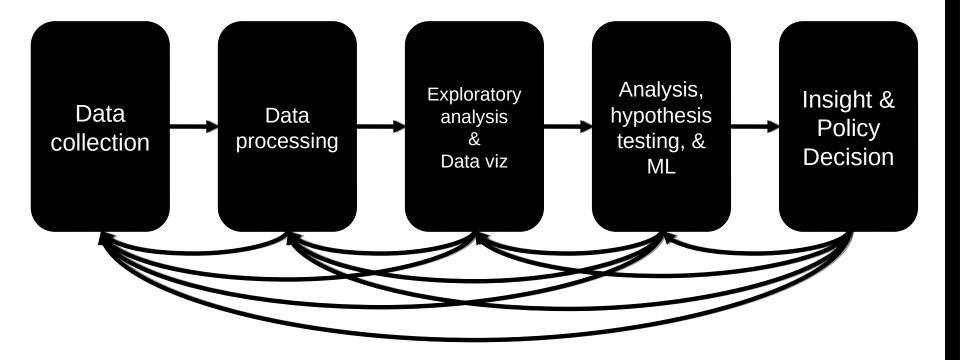
\equiv Business Insider

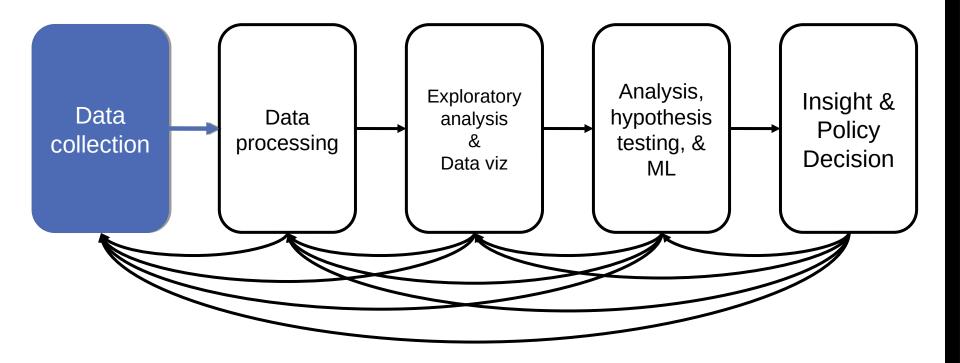
CAREERS

1. Data scientist

Shutterstock

Overall job score (out of 5.0): 4.8 Job satisfaction rating (out of 5.0): 4.4 Number of job openings: 4,184 Median base pay: \$110,000


http://www.businessinsider.com/ best-jobs-in-america-in-2017-2017J


UP NEXT ... SCRAPING DATA WITH PYTHON

e python™

THE DATA LIFECYCLE

(THE REST OF) TODAY'S LECTURE

BUT FIRST, SNAKES!

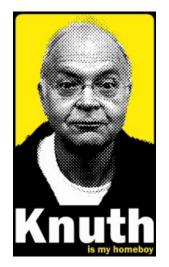
Python is an interpreted, dynamically-typed, high-level, garbage-collected, object-oriented-functional-imperative, and widely used scripting language.

- Interpreted: instructions executed without being compiled into (virtual) machine instructions*
- **Dynamically-typed:** verifies type safety at runtime
- **High-level:** abstracted away from the raw metal and kernel
- Garbage-collected: memory management is automated
- **OOFI:** you can do bits of OO, F, and I programming

Not the point of this class!

• Python is fast (developer time), intuitive, and used in industry!

THE ZEN OF PYTHON


- Beautiful is better than ugly.
- Explicit is better than implicit.
- Simple is better than complex.
- Complex is better than complicated.
- Flat is better than nested.
- Sparse is better than dense.
- Readability counts.
- Special cases aren't special enough to break the rules ...
- ... although practicality beats purity.
- Errors should never pass silently ...
- ... unless explicitly silenced.

LITERATE PROGRAMMING

Literate code contains in one document:

- the source code;
- text explanation of the code; and
- the end result of running the code.

Basic idea: present code in the order that logic and flow of human thoughts demand, not the machine-needed ordering

- Necessary for data science!
- Many choices made need textual explanation, ditto results.

IP[y]: IPython Interactive Computing Jupyter

Stuff you'll be using in Project 0 (and beyond)!

JUPYTER PROJECT

Started as iPython Notebooks, a web-based frontend to the iPython Shell

- Notebook functionality separated out a few years ago
- Now supports over 40 languages/kernels
- Notebooks can be shared easily
- Can leverage big data tools like Spark

Apache Zeppelin:

<u>https://www.linkedin.com/pulse/comprehensive-comparison-jupter-vs-zeppelin-hoc-q-phan-mba-</u>

Several others including RStudio (specific to R)

10-MINUTE PYTHON PRIMER

Define a function:

```
def my_func(x, y):
    if x > y:
        return x
    else:
        return y
```

Python is whitespace-delimited

Define a function that returns a tuple:

```
def my_func(x, y):
    return (x-1, y+2)
```

```
(a, b) = my_func(1, 2)
```


USEFUL BUILT-IN FUNCTIONS: COUNTING AND ITERATING

len: returns the number of items of an enumerable object

len(['c', 'm', 's', 'c', 3, 2, 0])

7

range: returns an iterable object

list(range(10))

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

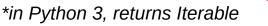
enumerate: returns iterable tuple (index, element) of a list

enumerate(["311", "320", "330"])

[(0, "311"), (1, "320"), (2, "330")]

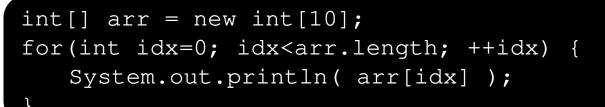
https://docs.python.org/3/library/functions.html

USEFUL BUILT-IN FUNCTIONS: MAP AND FILTER


map: apply a function to a sequence or iterable

arr = [1, 2, 3, 4, 5]
map(lambda x: x**2, arr)

[1, 4, 9, 16, 25]


filter: returns a list* of elements for which a predicate is true

We'll go over in much greater depth with pandas/numpy.

PYTHONIC PROGRAMMING

Basic iteration over an array in Java:

Direct translation into Python:

```
idx = 0
while idx < len(arr):
    print( arr[idx] ); idx += 1</pre>
```

A more "Pythonic" way of iterating:

```
for element in arr:
    print( element )
```

LIST COMPREHENSIONS

Construct sets like a mathematician!

- $P = \{ 1, 2, 4, 8, 16, ..., 2^{16} \}$
- $E = \{x \mid x \text{ in } \mathbb{N} \text{ and } x \text{ is odd and } x < 1000 \}$

Construct lists like a mathematician who codes!

$$P = [2**x \text{ for } x \text{ in range}(17)]$$

E = [x for x in range(1000) if x % 2 != 0]

Very similar to map, but:

- You'll see these way more than map in the wild
- Many people consider map/filter not "pythonic"
- They can perform differently (map is "lazier")

follow your

EXCEPTIONS

Syntactically correct statement throws an exception:

- tweepy (Python Twitter API) returns "Rate limit exceeded"
- sqlite (a file-based database) returns IntegrityError

```
print('Python', python_version())

try:
   cause_a_NameError
except NameError as err:
   print(err, '-> some extra text')
```

PYTHON 2 VS 3

Python 3 is intentionally backwards incompatible

• (But not *that* incompatible)

Biggest changes that matter for us:

- print "statement" print("function")
- 1/2 = 0 $\square 1/2 = 0.5$ and 1/2 = 0
- ASCII str default 🛛 🖬 default Unicode

Namespace ambiguity fixed:

```
i = 1
[i for i in range(5)]
print(i)  # ???????
```

TO ANY CURMUDGEONS ...

If you're going to use Python 2 anyway, use the _future_ module:

- Python 3 introduces features that will throw runtime errors in Python 2 (e.g., with statements)
- _future_ module incrementally brings 3 functionality into 2
- https://docs.python.org/2/library/__future__.html

from _future_ import division

from _future_ import print_function

from _future_ import please_just_use_python_3

SO, HOW DOES IMPORT WORK?

Python code is stored in module – simply put, a file full of Python code

A **package** is a directory (tree) full of modules that also contains a file called <u>__init.py__</u>

- Packages let you structure Python's module namespace
- E.g., X.Y is a submodule Y in a package named X

For one module to gain access to code in another module, it must import it

EXAMPLE

```
sound/
                                 Top-level package
        init .py
                                 Initialize the sound package
                                 Subpackage for file format conversions
      formats/
                init .py
              wavread.py
              wavwrite.py
              aiffread.py
              aiffwrite.py
              auread.py
              auwrite.py
              . . .
      effects/
                                 Subpackage for sound effects
               init .py
              echo.py
              surround.py
              reverse.py
              . . .
                                 Subpackage for filters
      filters/
               init .py
              equalizer.py
              vocoder.py
              karaoke.py
               . . .
```

Load (sub)module sound.effects.echo import sound.effects.echo # Must use full name to reference echo functions sound.effects.echo.echofilter(input, output, delay=0.7) https://docs.python.org/2/tutorial/modules.html

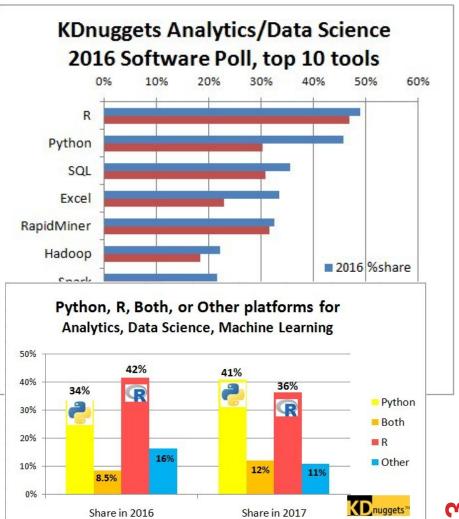
EXAMPLE

Load (sub)module sound.effects.echo import sound.effects.echo # Must use full name to reference echo functions sound.effects.echo.echofilter(input, output, delay=0.7)

Load (sub)module sound.effects.echo
from sound.effects import echo
No longer need the package prefix for functions in echo
echo.echofilter(input, output, delay=0.7)

Load a specific function directly
from sound.effects.echo import echofilter
Can now use that function with no prefix
echofilter(input, output, delay=0.7)

https://docs.python.org/2/tutorial/modules.html


 \mathbf{m}

PYTHON VS R (FOR DATA SCIENTISTS)

There is no right answer here!

- Python is a "full" programming language – easier to integrate with systems in the field
- R has a more mature set of pure stats libraries ...
- ... but Python is catching up quickly ...
- ... and is already ahead specifically for ML.

You will see Python more in the tech industry.

Poll 2017

EXTRA RESOURCES

Plenty of tutorials on the web:

• https://www.learnpython.org/

Work through Project 0, which will take you through some baby steps with Python and the Pandas library:

• (We'll also post some more readings soon.)

Come (virtually!) hang out at office hours:

- All office hours will be on the website/Piazza by early next week.
- Will have coverage MTWThF.

