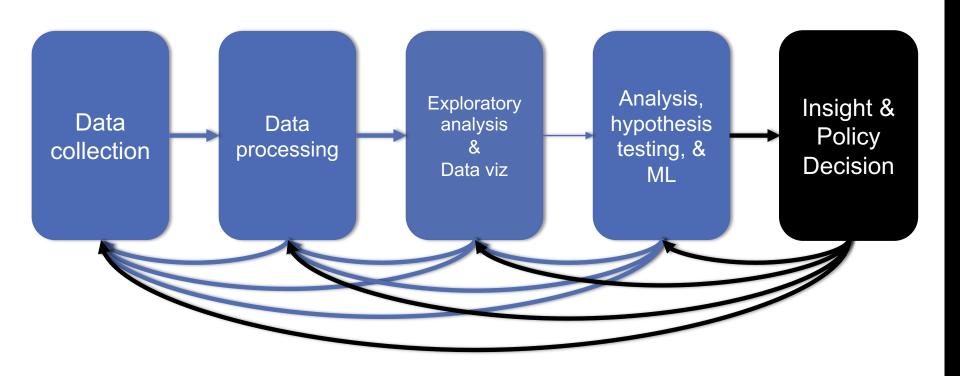
INTRODUCTION TO DATA SCIENCE

JOHN P DICKERSON

Lecture #27 – 12/02/2021 Lecture #28 – 12/07/2021 Lecture #29 – 12/09/2021

CMSC320
Tuesdays & Thursdays
5:00pm - 6:15pm
(... or anytime on the Internet)

TODAY'S LECTURE



BIG THANKS: Zico Kolter (CMU)
& Amol Deshpande (UMD)

STATISTICAL INFERENCE

Statistical inference is the discipline that concerns itself with the development of procedures, methods, and theorems that allow us to extract meaning and information from data that has been generated by stochastic (random) processes.

- Process of going from the world to the data, and then back to the world
- Often the goal is to develop a statistical model of the world from observed data

Conclusion is typically:

- an estimate;
- or a confidence interval;
- or rejection of a hypothesis
- or clustering or classification of data points into groups

BASIC PROBABILITY I

Probability is concerned with the outcome of a trial (also called experiment or observation)

Sample Space: Set of all possible outcomes of a trial

Probability of Sample Space = 1

Event is the specification of the outcome of a trial

 For example: Trial = Tossing a coin; Sample Space = {Heads, Tails}; Event = Heads

If two events E and F are independent, then: Probability of E does not change if F has already happened = P(E), i.e., $P(E \mid F) = P(E)$

Also: P(E AND F) = P(E) * P(F)

If two events E and F are mutually exclusive, then: $P(E \cup F) = P(E) + P(F)$

BASIC PROBABILITY II

Bayes Theorem $P(A \mid B) = P(B \mid A) * P(A) / P(B)$

Simple equation, but fundamental to Bayesian inference

Conditional Independence: A and B are conditionally independent given C if: Pr(A AND B | C) = Pr(A | C) * Pr(B | C)

Powerful in reducing the computational efforts in storing and manipulating large joint probability distributions

Entropy: A measure of the uncertainty in a probability distribution

Wikipedia Article

RECALL: NORMAL DISTRIBUTION

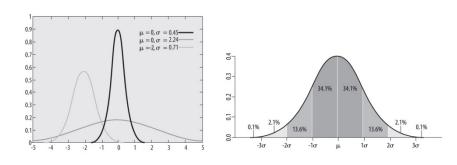


Figure 3.1: (left) All normal distributions have the same shape but differ to their μ and σ : they are shifted by μ and stretched by σ . (right) Percent of data failing into specified ranges of the normal distribution.

99.7% values will fall within 3 standard deviations (around the mean)

95% for 2 standard deviations;
68% for 1

Central Limit Theorem: As sample size approaches infinity, distribution of sample means will follow a normal distribution irrespective of the original distribution

HYPOTHESIS TESTING

Accepting or rejecting a statistical hypothesis about a population

H_0: null hypothesis, and **H_1**: the alternative hypothesis

- Mutually exclusive and exhaustive
- H_0 can never be proven to be true, but can be rejected
- Sometimes don't have H_1 at all (Fisher's test)

Statistical significance: probability that the result is not due to chance

Example: Deciding if a coin is fair

http://20bits.com/article/hypothesis-testing-the-basics

HYPOTHESIS TESTING

H₀: *null hypothesis*, and H₁: the *alternative hypothesis*

- Mutually exclusive and exhaustive
- H₀ can never be proven to be true

Statistical significance: probability that the result is not due to chance Process:

- Decide on H₀ and H₁
- Decide which test statistic is appropriate
 - Roughly, how well does my sample agree with the null hypothesis?
 - Key question: what is the distribution of the test statistic over samples?
- Select a significance level (sigma), a probability threshold below which the null hypothesis will be rejected -- typically 5% or 1%.
- Compute the observed value of the test statistic t_{obs} from the sample
- Compute p-value: the probability that the test statistic took that value by chance
 - Use the distribution above to compute the *p-value*
- Reject the null hypothesis if the p-value < \sigma

Outline

Motivation

Background: sample statistics and central limit theorem

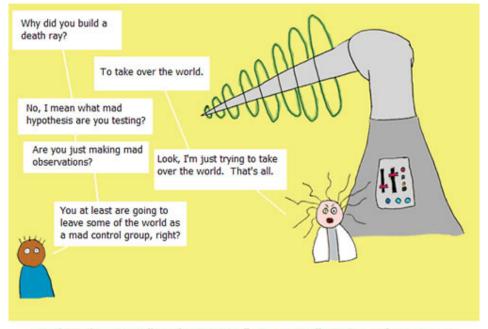
Basic hypothesis testing

Experimental design

Motivating setting

For a data science course, there has been very little "science" thus far...

"Science" as I'm using it roughly refers to "determining truth about the real world"



Sad truth: Most "mad scientists" are actually just mad engineers

Asking scientific questions

Suppose you work for a company that is considering a redesign of their website; does their new design (design B) offer any statistical advantage to their current design (design A)?

In linear regression, does a certain variable impact the response? (E.g. does energy consumption depend on whether or not a day is a weekday or weekend?)

In both settings, we are concerned with making actual statements about the nature of the world

Outline

Motivation

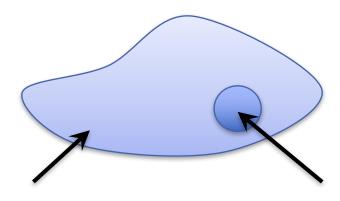
Background: sample statistics and central limit theorem

Basic hypothesis testing

Experimental design

Sample statistics

To be a bit more consistent with standard statistics notation, we'll introduce the notion of a *population* and a *sample*



Population

Mean

$$\mu = \mathbf{E}[X]$$

Variance

$$\sigma = \mathbf{E}[(X-\mu)^2]$$

Sample

$$\bar{x} = \frac{1}{m} \sum_{i=1}^{m} x^{(i)}$$

$$s^{2} = \frac{1}{m-1} \sum_{i=1}^{m} (x^{(i)} - \bar{x})^{2}$$

Sample mean as random variable

The same mean is an empirical average over m independent samples from the distribution; it can also be considered as a random variable

This new random variable has the mean and variance

$$\mathbf{E}[\bar{x}] = \mathbf{E}\left[\frac{1}{m}\sum_{i=1}^{m}x^{(i)}\right] = \frac{1}{m}\sum_{i=1}^{m}\mathbf{E}[X] = \mathbf{E}[X] = \mu$$

$$\mathbf{Var}[\bar{x}] = \mathbf{Var}\left[\frac{1}{m}\sum_{i=1}^{m}x^{(i)}\right] = \frac{1}{m^2}\sum_{i=1}^{m}\mathbf{Var}[X] = \frac{\sigma^2}{m}$$

where we used the fact that for independent random variables X_1,X_2 $\mathbf{Var}[X_1+X_2]=\mathbf{Var}[X_1]+\mathbf{Var}[X_2]$

When estimating variance of sample, we use s^2/m (the square root of this term is called the **standard error**)

Central limit theorem

Central limit theorem states further that \bar{x} (for "reasonably sized" samples, in practice $m\geq 30$) actually has a Gaussian distribution regardless of the distribution of X

$$\bar{x} \to \mathcal{N}\left(\mu, \frac{\sigma^2}{m}\right) \text{ (or equivalently) } \frac{\bar{x} - \mu}{\sigma/m^{1/2}} \to \mathcal{N}(0, 1)$$

In practice, for m<30 and for estimating σ^2 using sample variance, we use a Student's t-distribution with m-1 degrees of freedom

$$\frac{\bar{x} - \mu}{s/m^{1/2}} \to T_{m-1}, \qquad p(x; \nu) \propto \left(1 + \frac{x^2}{\nu}\right)^{-\frac{\nu+1}{2}}$$

Outline

Motivation

Background: sample statistics and central limit theorem

Basic hypothesis testing

Experimental design

Hypothesis testing

Using these basic statistical techniques, we can devise some tests to determine whether certain data gives evidence that some effect "really" occurs in the real world

Fundamentally, this is evaluating whether things are (likely to be) true about the population (all the data) given a sample

Lots of caveats about the precise meaning of these terms, to the point that many people debate the usefulness of hypothesis testing at all

But, still incredibly common in practice, and important to understand

Hypothesis testing basics

Posit a null hypothesis ${\cal H}_0$ and an alternative hypothesis ${\cal H}_1$ (usually just that " ${\cal H}_0$ is not true"

Given some data x, we want to accept or reject the null hypothesis in favor of the alternative hypothesis

	H_0 true	H_1 true
Accept H_0	Correct	Type II error (false negative)
Reject H_0	Type I error (false positive)	Correct

$$p(\text{reject } H_0|H_0 \text{ true}) = \text{"significance of test"}$$

 $p(\text{reject } H_0|H_1 \text{ true}) = \text{"power of test"}$

Table of error types		Null hypothesis (<i>H</i> ₀) is		
		True	False	
Decision About Null Hypothesis (<i>H</i> ₀)	Fail to reject	Correct inference (True Positive) (Probability = 1 - α)	Type II error (False Negative) (Probability = β)	
	Reject	Type I error (False Positive) (Probability = α)	Correct inference (True Negative) (Probability = 1 - β)	

Source: Wikipedia

Basic approach to hypothesis testing

Basic approach: compute the probability of observing the data *under* the null hypothesis (this is the p-value of the statistical test)

$$p = p(\text{data}|H_0 \text{ is true})$$

Reject the null hypothesis if the p-value is below the desired significance level (alternatively, just report the p-value itself, which is the lowest significance level we could use to reject hypothesis)

Important: p-value is $p(\text{data}|H_0 \text{ is true}) \text{ not } p(H_0 \text{ not true } |\text{data})$

Canonical example: t-test

Given a sample $x^{(1)},\dots,x^{(m)}\in\mathbb{R}$

$$H_0: \mu = 0$$
 (for population)
 $H_1: \mu \neq 0$

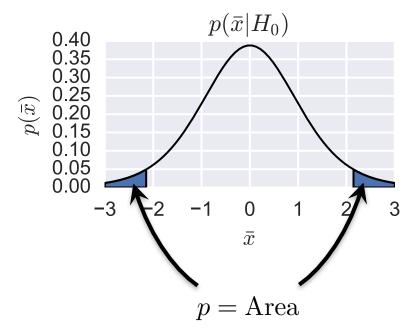
By central limit theorem, we know that $(\bar{x}-\mu)/(s/m^{\frac{1}{2}})\sim T_{m-1}$ (Student's t-distribution with m-1 degrees of freedom)

So we just compute $t=\bar{x}/\big(s/m^{\frac{1}{2}}\big)$ (called *test statistic*), then compute p=p(x>|t|)+p(x<-|t|)=F(-|t|)+1-F(|t|)=2F(-|t|)

(where F is cumulative distribution function of Student's t-distribution)

Visual example

What we are doing fundamentally is modeling the distribution $p(\bar{x}|H_0)$ and then determining the probability of the observed \bar{x} or a more extreme value



Code in Python

Compute t statistic and p value from data

```
import numpy as np
import scipy.stats as st
x = np.random.randn(m)
# compute t statistic and p value
xbar = np.mean(x)
s2 = np.sum((x - xbar)**2)/(m-1)
std err = np.sqrt(s2/m)
t = xbar/std err
t dist = st.t(m-1)
p = 2*td.cdf(-np.abs(t))
# with scipy alone
t,p = st.ttest 1samp(x, 0)
```

Two-sided vs. one-sided tests

The previous test considered deviation from the null hypothesis in both directions (two-sided test), also possible to consider a one-sided test

$$H_0: \mu \ge 0$$
 (for population)
 $H_1: \mu < 0$

Same t statistic as before, but we only compute the area under the left side of the curve

p = p(x < t) = F(t)

 \bar{x}

Outline

Motivation

Background: sample statistics and central limit theorem

Basic hypothesis testing

Experimental design

Experimental design: A/B testing

Up until now, we have assumed that the null hypothesis is given by some *known* mean, but in reality, we may not know the mean that we want to compare to

Example: we want to tell if some additional feature on our website makes user stay longer, so we need to estimate both how long users stay on the current site and how long they stay on redesigned site

Standard approach is A/B testing: create a control group (mean μ_1) and a treatment group (mean μ_2)

$$H_0: \mu_1 = \mu_2 \text{ (or e.g. } \mu_1 \ge \mu_2)$$

$$H_1: \mu_1 \neq \mu_2 \text{ (or e.g. } \mu_1 < \mu_2)$$

Independent t-test (Welch's t-test)

Collect samples (possibly different numbers) from both populations

$$x_1^{(1)},\dots,x_1^{(m_1)}, \qquad x_2^{(1)},\dots,x_2^{(m_2)}$$

compute sample mean \bar{x}_1, \bar{x}_2 and sample variance s_1^2, s_2^2 for each group

Compute test statistic

$$t = \frac{\bar{x}_1 - \bar{x}_2}{(s_1^2/m_1 + s_2^2/m_2)^{1/2}}$$

And evaluate using a t distribution with degrees of freedom given by

$$\frac{(s_1^2/m_1 + s_2^2/m_2)^2}{\frac{(s_1^2/m_1)^2}{m_1 - 1} + \frac{(s_2^2/m_2)^2}{m_2 - 1}}$$

Starting seem a bit ad-hoc?

There are a huge number of different tests for different situations

You probably won't need to remember these, and can just look up whatever test is most appropriate for your given situation

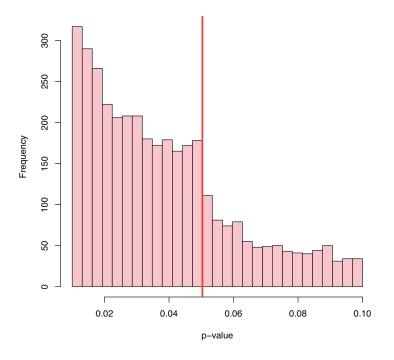
But the basic idea in call cases is the same: you're trying to find the distribution of your test statistic under the hull hypothesis, and then you are computing the probability of the observed test statistic or something more extreme

All the different tests are really just about different distributions based upon your problem setup

P-values considered harmful

A basic problem is that $p({\rm data}|H_0) \neq p(H_0|{\rm data})$ (despite being frequently interpreted as such)

People treat p < 0.05 with way too much importance



Histogram of p values from ~3,500 published journal papers (from E. J. Masicampo and Daniel Lalande, *A peculiar prevalence of p values just below .05*, 2012)

SCIENTIFIC METHOD: STATISTICAL ERRORS

Nature Article

P values not as reliable as many scientists assume

p-hacking: cherry picking data points etc., to get the p-values; repeating experiments if they fail till you get the result

Much discussion/debate about this issue in recent years

SAMPLING BIASES

Sampling effective at reducing the data you need to analyze Ideally you want random sample

Otherwise you need to account for bias, which can be tricky

Bias in sampling: need to be very careful when generalizing inferences drawn from a sample

Even for random samples

Questions to ask: How was the sample selected? Was it truly random? Potential biases? How were questions worded? How is missing data/attrition handled? Was the sample size large enough?

SOME POTENTIAL SOURCES OF BIASES

Sample Bias

- Selection bias: some subjects more likely to be selected
- Volunteer bias: people who volunteer are not representative
- Nonresponse bias: people who decline to be interviewed

Survey/Response Bias

- Interviewer bias
- Acquiescence bias tendency to agree with all questions
- Social desirability bias: people are not going to admit to embarrassing things

Also watch out for:

- Confirmation bias
- Anchor bias

SOME POTENTIAL SOURCES OF BIASES

Gold Standard: Randomized Clinical Trials

- Some people receive "treatment", others in a "control" group
- Picked randomly to take care of all confounding factors
- Problems:
 - Ethically feasible only if clinically equipoise
 - Can't ask some people to smoke to figure out the effects of smoking
 - Very expensive and cumbersome
 - Impossible in many cases

E.g.: Recent Facebook experiment on emotions

A true state of **equipoise** exists when one has no good basis for a choice between two or more care options. - NIH

DETERMINING CAUSATION

Bradford Hill's Criteria: widely accepted in the modern era as useful guidelines for investigating <u>causality</u> in <u>epidemiological</u> studies

- Strength: how large is the association
- Consistency across different samples
- How specific
- Cause should precede effect (temporality)
- Biological gradient (increase dose → increase association)
- Plausibility
- Coherence
- Experiment
- Consideration of alternate explanations

MISUSE OF STATISTICS

This famous, but old book on statistics goes into detail about

How to lie with statistics

Number of children abused per 1,000 population in 1998 (National average is 12.9)*

States with the highest rates

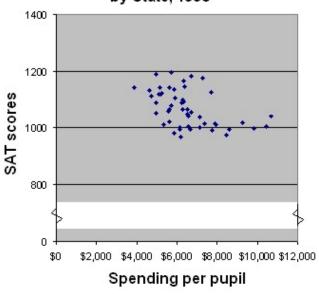
1. Alaska	37.1
2. Florida	23.2
3. Kentucky	23.1
4. Idaho	22.6
5. Connecticut	21.4
States with the lowe	st rates
45. Wisconsin	6.0
46. Virginia	5.9

48. New Hampshire 3.9 49. Pennsylvania 1.9

*North Daileote not reporting

Source: U.S Department of Health and Human Services, Children's Bureau

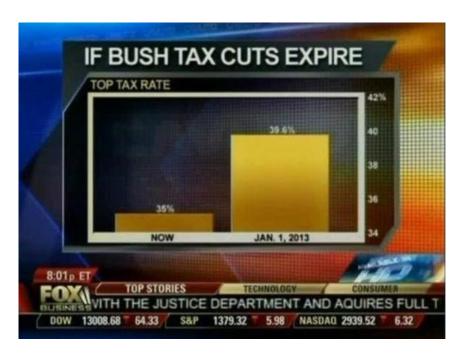
Spending per Pupil and SAT Scores by State, 1998

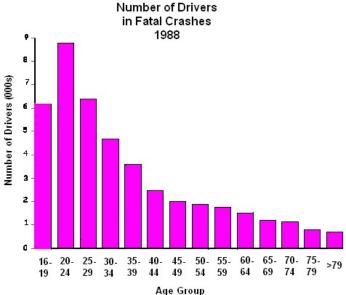


SAT Scores, 1998

State	Verbal	Math	Participation Rate
North Dakota	590	599	5%
New Jersey	497	508	79%

BEWARE OF CHART





Graph is based on data from this study: Williams, Allan F., Ph.D., and Oliver Carston, Ph.D., "Driver Age and Crash Involvement," Am J Public Health 1989: 79: 326-327.



Graph is based on data from this study: Williams, Allan F., Ph.D., and Oliver Carston, Ph.D., "Driver Age and Crash Involvement," Am J Public Health 1989: 79: 326-327.

BEWARE OF CHARTS!

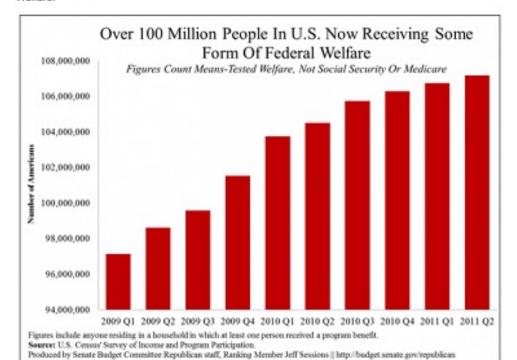
THE BLOG

Over 100 Million Now Receiving Federal Welfare

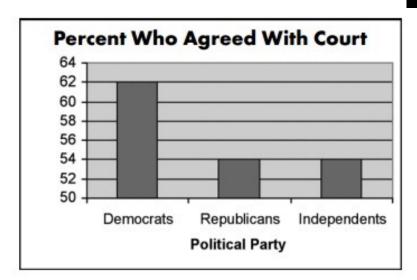
2:40 PM, AUG 8, 2012 - BY DANIEL HALPER [N]

. .

A new chart set to be released later today by the Republican side of the Senate Budget Committee details a startling statistic: "Over 100 Million People in U.S. Now Receiving Some Form Of Federal Welfare."



Terry Schiavo Case



NEWSPAPERS EVEN

MORE

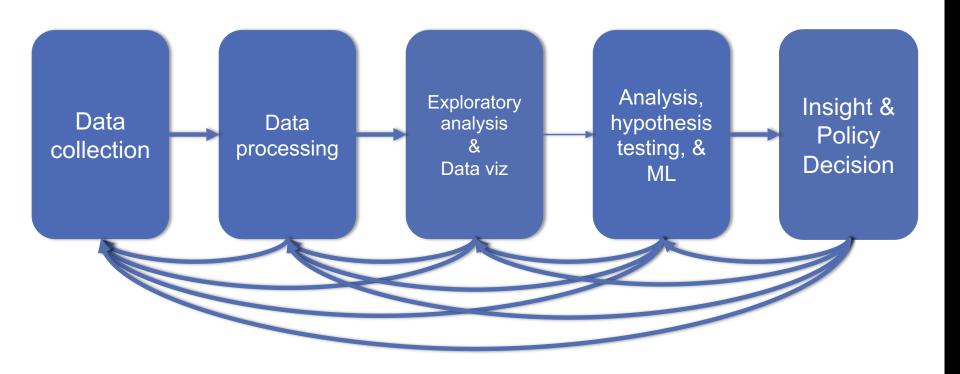
Source

A Washington Post article says: In the first study of its kind, researchers from Washington State University and elsewhere found a 14 percent greater risk of head injuries to cyclists associated with cities that have bike share programs. In fact, when they compared raw head injury data for cyclists in five cities before and after they added bike share programs, the researchers found a 7.8 percent increase in the number of head injuries to cyclists.

Actually: head injuries declined from 319 to 273, and overall injuries declined from 757 to 545

So the proportion of head injuries went up !!

NEXT UP



BIG THANKS: Zico Kolter (CMU)
& Amol Deshpande (UMD)

OUTLINE

Informed Consent

Reproducibility

p-value Hacking

Who owns the data?

Privacy & Anonymity

Debugging Data Science

Algorithmic fairness

Data validity/provenance

INFORMED CONSENT

Respect for persons -- cornerstone value for any conception of research ethics

Informed consent de facto way to "operationalize" that principle

- Integral component of medical research for many decades
- Applicable for any research where "personal information" is divulged or human experimentation performed
- Institutional Review Boards (IRBs) in charge of implementing

How it translates into the "big data" world?

Largely ignored by most researchers

HISTORY

Systematic scientific experimentation on human subjects rare and isolated prior to the late 19th century

Some early directives in late 19th century and early 20th century

 Prussian directive in 1900: any medical intervention for any purpose other than diagnosis, healing, and immunisation must obtain "unambiguous consent" from patients after "proper explanation of the possible negative consequences" of the intervention

Nuremberg Code, drafted after conclusion of Nazi Doctors' trials:

- established a universal ethical framework for clinical research
- "the voluntary consent of the human subject is absolutely essential" to ethical research
- Detailed specific guidelines on what to present to subjects (nature/duration/purpose, how conducted, effects on health, etc)

HISTORY

Salgo v Leland Stanford etc. Board of Trustees (1957) ... cited as establishing the legal doctrine of informed consent for medical practice and biomedical research in the United States

 plaintiff was awarded damages for not receiving full disclosure of facts

In 1953: NIH put the first IRB in place in its own hospital

- ... voluntary agreement based on informed understanding shall be obtained from the patient
- ... will be given an oral explanation in terms suited for his comprehension
- Only required a voluntary signed statement if the procedure involved "unusual hazard."

HISTORY

A more detailed list of requirements emerged later

- 1) A fair explanation of the procedures to be followed, including an identification of those which are experimental;
- 2) A description of the attendant discomforts and risks;
- 3) A description of the benefits to be expected;
- 4) A disclosure of appropriate alternative procedures that would be advantageous for the subject;
- 5) An offer to answer any inquires concerning the procedures;
- 6) An instruction that the subject is free to withdraw his consent and to discontinue participation in the project or activity at any time

"Common Rule" – codification of "respect for persons, beneficence, and justice"

- Regulates use of human subjects in US today
- More elaborate treatment of all of these aspects

NON-MEDICAL RESEARCH

Unclear how the rules translate to other types of research

Identifying harm or potential risks difficult

Requirements and experiments change over the course of the study

The list of subjects itself evolving

CS has rarely had to deal with IRBs

Although changing...

INDUSTRY RESEARCH

Less distinction between conventional or academic social scientific research and industry- or market-oriented research

Data fusion can lead to new insights and uses of data

Hard to translate the "informed consent" requirements to these settings

CASE STUDY: FACEBOOK EMOTIONAL EXPERIMENT

Facebook routinely does A/B testing to test out new features (e.g., layouts, features, fonts, etc)

In 2014: intentionally manipulated news feeds of 700k users

- Changed the number of positive and negative stories the users saw
- Measured how the users themselves posted after that

Hypothesis: Emotions spread over the social media

Huge outcry

Facebook claims it gets the "consent" from the user agreement

OKCUPID EXPERIMENTS

Experiment 1: Love is Blind

- Turned off photos for a day
- Activity went way down, but deeper conversations, better responses
- Deeper analysis at the link below

Experiment 2:

- Turned off text or not kept picture
- Strong support for the hypothesis that the words don't matter

Experiment 3: Power of Suggestion

Told people opposite of what the algorithm suggested

https://theblog.okcupid.com/we-experiment-on-human-beings-5dd9fe280cd5

GDPR AND CONSENT

General Data Protection Regulation – new law in EU that recently went into play

Requires unambiguous consent

- data subjects are provided with a clear explanation of the processing to which they are consenting
- the consent mechanism is genuinely of a voluntary and "optin" nature
- data subjects are permitted to withdraw their consent easily
- the organisation does not rely on silence or inactivity to collect consent (e.g., pre-ticked boxes do not constitute valid consent);

OUTLINE

Informed Consent

Reproducibility

p-value Hacking

Who owns the data?

Privacy & Anonymity

Debugging Data Science

Algorithmic fairness

Data validity/provenance

THE REPRODUCIBIL needs to improve Many of the studies that use animals to model human diseases are too small and too prone to bigs to be trueted some Valence.

Why animal research

Noted by research community; in Beware the creeping cracks of bias

- Evidence is mounting that research is riddled with systematic errors. Left unchecked, this could erode public trust, warns Daniel Sarewitz.
- Especially in preclinical research

Believe it or not: how much can we rely on published data on potential drug targets?

Florian Prinz, Thomas Schlange and Khusru Asadullah

False-Positive Psychology: Undisclosed Flexibility in Data Collection and Analysis Allows Presenting Anything as Significant

Raise standards for preclinical cancer research

C. Glenn Begley and Lee M. Ellis propose how methods, publications and incentives must change if patients are to benefit.

Drug targets slip-sliding away

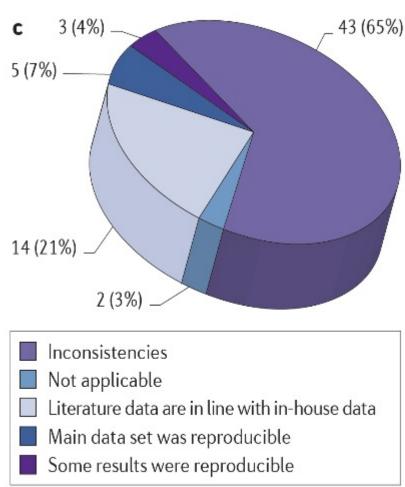
The starting point for many drug discovery programs is a published report on a new drug target. Assessing the reliability of such papers requires a nuanced view of the process of scientific discovery and publication.

Reforming Science: Methodological and Cultural Reforms

Believe it or not: how much can we rely on published data on potential drug targets?

Prinz, Schlange and Asadullah Bayer HealthCare

Nature Reviews Drug Discovery 2011; 10:712-713



PERSPECTIVE

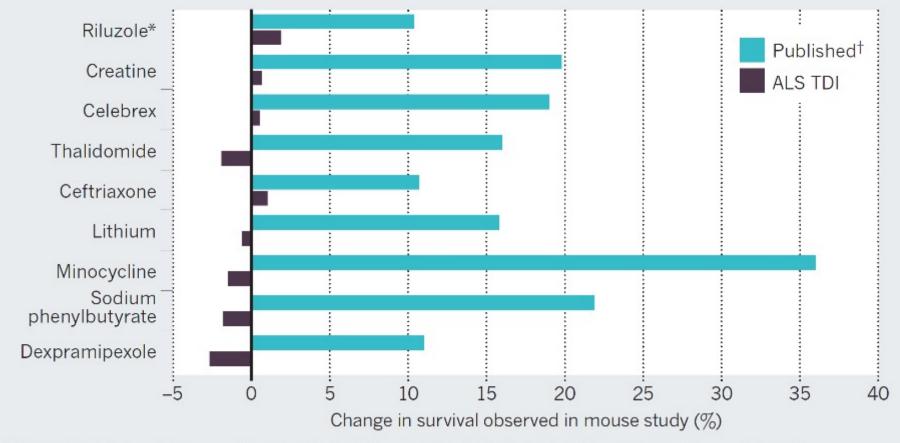
A call for transparent reporting to optimize the predictive value of preclinical research

Story C. Landis¹, Susan G. Amara², Khusru Asadullah³, Chris P. Austin⁴, Robi Blumenstein⁵, Eileen W. Bradley⁶, Ronald G. Crystal⁷, Robert B. Darnell⁸, Robert J. Ferrante⁹, Howard Fillit¹⁰, Robert Finkelstein¹, Marc Fisher¹¹, Howard E. Gendelman¹², Robert M. Golub¹³, John L. Goudreau¹⁴, Robert A. Gross¹⁵, Amelie K. Gubitz¹, Sharon E. Hesterlee¹⁶, David W. Howells¹⁷, John Huguenard¹⁸, Katrina Kelner¹⁹, Walter Koroshetz¹, Dimitri Krainc²⁰, Stanley E. Lazic²¹, Michael S. Levine²², Malcolm R. Macleod²³, John M. McCall²⁴, Richard T. Moxley III²⁵, Kalyani Narasimhan²⁶, Linda J. Noble²⁷, Steve Perrin²⁸, John D. Porter¹, Oswald Steward²⁹, Ellis Unger³⁰, Ursula Utz¹ & Shai D. Silberberg¹

The US National Institute of Neurological Disorders and Stroke convened major stakeholders in June 2012 to discuss how to improve the methodological reporting of animal studies in grant applications and publications. The main workshop recommendation is that at a minimum studies should report on sample-size estimation, whether and how animals were randomized, whether investigators were blind to the treatment, and the handling of data. We recognize that achieving a meaningful improvement in the quality of reporting will require a concerted effort by investigators, reviewers, funding agencies and journal editors. Requiring better reporting of animal studies will raise awareness of the importance of rigorous study design to accelerate scientific progress.

DUE DILIGENCE, OVERDUE

Results of rigorous animal tests by the Amyotrophic Lateral Sclerosis Therapy Development Institute (ALS TDI) are less promising than those published. All these compounds have disappointed in human testing.



^{*}Although riluzole is the only drug currently approved by the US Food and Drug Administration for ALS, our work showed no survival benefit. †References for published studies can be found in supplementary information at go.nature.com/hf4jf6.

CHALLENGES TO RIGOR AND TRANSPARENCY IN REPORTING SCIENCE

Science often viewed as self-correcting

- Immune from reproducibility problems?
- Principle remains true over the long-term

In the short- and medium-term, interrelated factors can short-circuit self-correction

- Leads to reproducibility problem
- Loss of time, money, careers, public confidence

FACTORS THAT "SHORT CIRCUIT" SELF-CORRECTION

Current "hyper-competitive" environment fueled, in part, by:

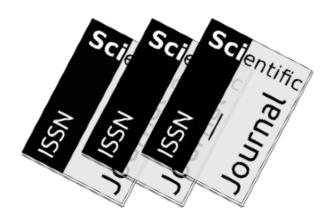
Historically low funding rates

 Grant review and promotion decisions depend too much on "high profile" publications

FACTORS THAT "SHORT CIRCUIT" SELF-CORRECTION

Publication practices:

- Difficulty in publishing negative findings
- Overemphasis on the "exciting, big picture" finding sometimes results in publications leaving out necessary details of experiments



FACTORS THAT "SHORT CIRCUIT" SELF-CORRECTION

Poor training

- Inadequate experimental design
- Inappropriate use of statistics ("p-hacking")
- Incomplete reporting of resources used and/or unexpected variability in resources

REPRODUCIBILITY

Extremely important aspect of data analysis

 "Starting from the same raw data, can we reproduce your analysis and obtain the same results?"

Using libraries helps:

- Since you don't reimplement everything, reduce programmer error
- Large user bases serve as "watchdog" for quality and correctness

Standard practices help:

- Version control: git, git, git, ..., git, svn, cvs, hg, Dropbox
- Unit testing: unittest (Python), RUnit (R), testthat
- Share and publish: github, gitlab

PRACTICAL TIPS

Many tasks can be organized in modular manner:

- Data acquisition:
 - Get data, put it in usable format (many 'join' operations), clean it up – Anaconda lab from Tuesday!
- Algorithm/tool development:
 - If new analysis tools are required
- Computational analysis:
 - Use tools to analyze data
- Communication of results:
 - Prepare summaries of experimental results, plots, publication, upload processed data to repositories

PRACTICAL TIPS

Modularity requires organization and careful thought In Data Science, we wear two hats:

- Algorithm/tool developer
- Experimentalist: we don't get trained to think this way enough!

It helps two consciously separate these two jobs

Plan your experiment

Gather your raw data

Gather your tools

Execute experiment

Analyze

Communicate

Let this guide your organization. One potential structure for organizing a project:

```
project/
  data/
|  | processing scripts
| proc/
| tools/
 | src/
  | bin/
  exps
|  | pipeline scripts
 | results/
 | analysis scripts
 | figures/
```

Keep a lab notebook!

Literate programming tools are making this easier for computational projects:

- http://en.wikipedia.org/wiki/Literate_programming (Lec #2!)
- https://ipython.org/
- http://rmarkdown.rstudio.com/
- http://jupyter.org/

Separate experiment from analysis from communication

 Store results of computations, write separate scripts to analyze results and make plots/tables

Aim for reproducibility

- There are serious consequences for not being careful
 - Publication retraction
 - Worse:
 <u>http://videolectures.net/cancerbioinformatics2010_baggerly_i</u>
 rrh/
- Lots of tools available to help, use them! Be proactive: learn about them on your own!

OUTLINE

Informed Consent

Reproducibility

p-value Hacking

Who owns the data?

Privacy & Anonymity

Debugging Data Science

Algorithmic fairness

Data validity/provenance

AMERICAN STATISTICAL ASSOCIATION STATEMENT ON P-VALUES

Q:Why do so many colleges and grad schools teach p =0.05?

A: Because that's still what the scientific community and journal editors use.

Q:Why do so many people still use p = 0.05?

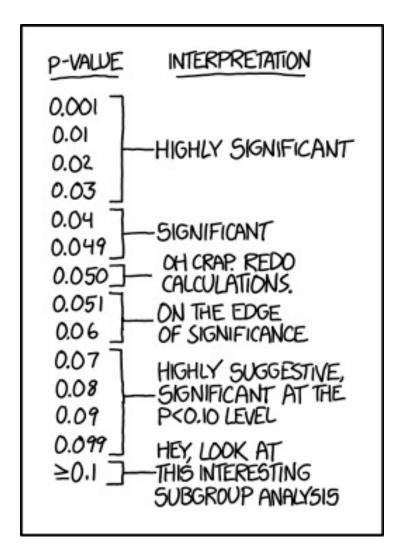
A:Because that's what they were taught in college or grad school.

ASA statement

- George Cobb, Professor Emeritus of Mathematics and Statistics - Mt Holyhoke College

WHAT IS A P-VALUE?

I CAN'T BELIEVE SCHOOLS ARE STILL TEACHING KIDS ABOUT THE NULL HYPOTHESIS. I REMEMBER READING A BIG STUDY THAT CONCLUSIVELY DISPROVED IT YEARS AGO.



MISCONCEPTIONS ABOUT THE P-VALUE

The *p*-value is *not* the probability that the null hypothesis is true or the probability that the alternative hypothesis is false. It is not connected to either.

The *p*-value is *not* the probability that a finding is "merely a fluke."

The *p*-value is *not* the probability of falsely rejecting the null hypothesis.

The *p*-value is *not* the probability that replicating the experiment would yield the same conclusion.

The significance level, such as 0.05, is not determined by the p-value.

The *p*-value does not indicate the size or importance of the observed effect.

Misconceptions about p-value has its own Wikipedia page

WHAT IS A P-VALUE?

Informally, a p-value is the probability under a specified statistical model that a statistical summary of the data (e.g., the sample mean difference between two compared groups) would be equal to or more extreme than its observed value.

PRINCIPLE 1

P-values can indicate how incompatible the data are with a specified statistical model.

The smaller the p-value, the greater the statistical incompatibility of the data with the null hypothesis, if the underlying assumptions used to calculate the p-value hold.

This incompatibility can be interpreted as casting doubt on or providing evidence against the null hypothesis or the underlying assumptions.

PRINCIPLE 2

P-values do not measure the probability that the studied hypothesis is true, or the probability that the data were produced by random chance alone.

The p-value is a statement about data in relation to a specified hypothetical explanation, and is not a statement about the explanation itself.

PRINCIPLE 2 – DON'T FLIP THE CONDITIONALITY

p-value is not P(Ho is true | getting data this extreme)

p-value is P(getting data this extreme | Ho is true)

ILLUSTRATIVE EXAMPLE (BAYESIAN)

Suppose there is a 5% probability that a research hypothesis (Ha) is true (prior).

You conduct the test with 90% power.

The p-value of the test is 0.04

Using Bayes' Rule:

$$P(Ha \mid data) = \frac{(.05)(.9)}{(.05)(.9) + (.95)(.04)} = .54$$

Scientific conclusions and business or policy decisions should not be based only on whether a p-value passes a specific threshold

A conclusion does not immediately become "true" on one side of the divide and "false" on the other.

Researchers should bring many contextual factors into play to derive scientific inferences, including the design of a study, the quality of the measurements, the external evidence for the phenomenon under study, and the validity of assumptions that underlie the data analysis.

Proper inference requires full reporting and transparency p-values and related analyses should not be reported selectively.

Cherry picking promising findings, also known by such terms as data dredging, significance chasing, significance questing, selective inference, and "p-hacking," leads to a spurious excess of statistically significant results in the published literature and should be vigorously avoided.

Example of p-hacking (from xkcd)

A p-value, or statistical significance, does not measure the size of an effect or the importance of a result.

Statistical significance is not equivalent to scientific, human, or economic significance.

Smaller p-values do not necessarily imply the presence of larger or more important effects, and larger p-values do not imply a lack of importance or even lack of effect.

Some research journals no longer look at p-values, but instead look at effect sizes.

By itself, a p-value does not provide a good measure of evidence regarding a model or hypothesis.

Researchers should recognize that a p-value without context or other evidence provides limited information.

A relatively large p-value does not imply evidence in favor of the null hypothesis; many other hypotheses may be equally or more consistent with the observed data.

OTHER APPROACHES

Methods that emphasize estimation over testing, such as confidence, credibility, or prediction intervals

Bayesian methods

Alternative measures of evidence, such as likelihood ratios or Bayes Factors

Other approaches such as decision-theoretic modeling and false discovery rates

FALSE-POSITIVES ARE EASY

It is common practice in all sciences to report less than everything.

- So people only report the good stuff. We call this p-Hacking.
- Accordingly, what we see is too "good" to be true.

We identify six ways in which people do that.

SIX WAYS TO P-HACK

Stop collecting data once *p*<.05

Analyze many measures, but report only those with p<.05.

Collect and analyze many conditions, but only report those with p<.05.

Use covariates to get p < .05.

Exclude participants to get p<.05.

Transform the data to get p<.05.

OK, BUT DOES THAT MATTER VERY MUCH?

As a field we have agreed on p<.05. (i.e., a 5% false positive rate).

If we allow p-hacking, then that false positive rate is actually 61%.

Conclusion: p-hacking is a potential catastrophe to scientific inference.

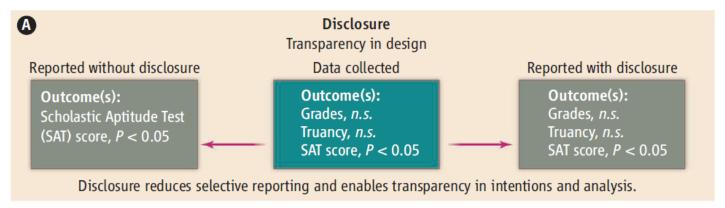
TRANSPARENT REPORTING

Solution 1:

- Report sample size determination.
- N > 20
- List all of your measures.
- List all of your conditions.
- If excluding, report without exclusion as well.
- If covariates, report without.

TRANSPARENT REPORTING

Solution 2:



B Preregistration Transparency in intentions		
Reported without preregistration	Reported with preregistration	
Outcome(s): Grades, n.s. Truancy, n.s. SAT score, P < 0.05	Primary outcome: Grades, n.s. Other outcomes: Truancy n.s. SAT score, P < 0.05	
Preregistration differentiates hypothesis testing from exploratory research.		

Open data and materials Transparency in analysis				
Summer break	Grades	Truancy	SAT score	
Short	2.95	2%	1020	
Short	3.30	0%	1360	
Long	2.32	4%	9.80 ?	
Long	3.87	0%	1450	
Open data reduce errors and fraud and facilitate replication and extension.				

Three mechanisms for increasing transparency in scientific reporting. Demonstrated with a research question: "Do shorter summer breaks improve educational outcomes?" n.s. denotes P > 0.05.

CONCLUSION

Good statistical practice, as an essential component of good scientific practice, emphasizes:

- principles of good study design and conduct
- a variety of numerical and graphical summaries of data
- understanding of the phenomenon under study
- Interpretation of results in context
- complete reporting
- Proper logical and quantitative understanding of what data summaries mean

No single index should substitute for scientific reasoning.

OUTLINE

Informed Consent

Reproducibility

p-value Hacking

Who owns the data?

Privacy & Anonymity

Debugging Data Science

Algorithmic fairness

Data validity/provenance

DATA OWNERSHIP

Consider your "biography"

- About you, but is it yours?
- No, the authors owns the copyright not much you can do

If someone takes your photo, they own it

- Limits on taking photos in private areas
- Can't use the photo in certain ways, e.g., as implied endorsement or implied libel

Intellectual Property Basics:

- Copyright vs Patent vs Trade Secret
- Derivative works

DATA OWNERSHIP

Data Collection and Curation takes a lot of effort, and whoever does this usually owns the data "asset"

Crowdsourced data typically belongs to the facilitator

Rotten tomatoes, yelp, etc.

What about personal data though?

- e.g., videos of you walking around a store, etc?
- Written contracts in some cases, but not always

New regulations likely to come up allowing customers to have more control over what happens with their data (e.g., GDPR)

OUTLINE

Informed Consent

Reproducibility

p-value Hacking

Who owns the data?

Privacy & Anonymity

Algorithmic fairness

Data validity/provenance

PRIVACY

First concern that comes to mind

- How to avoid the harms that can occur due to data being collected, linked, analyzed, and propagated?
- Reasonable rules?
- Tradeoffs?

No option to exit

- In the past, could get a fresh start by moving to a new place, waiting till the past fades
- big data is universal and never forgets
- Data science results in major asymmetries in knowledge

WAYBACK MACHINES

Archives pages on the web (https://archive.org/web/ - 300 billion pages saved over time)

- almost everything that is accessible
- should be retained forever

If you have an unflattering page written about you, it will survive for ever in the archive (even if the original is removed)

RIGHT TO BE FORGOTTEN

Laws are often written to clear a person's record Law in EU and Argentina since 2006 after some years.

impacts search engines (not removed completely, but hard to find)

Collection vs Use

- Privacy usually harmed upon use of data
- Sometimes collection without use may be okay
- Survenillance:
 - By the time you know what you need, it is too late to go back and get it

WHY PRIVACY?

Data subjects have inherent right and expectation of privacy

"Privacy" is a complex concept

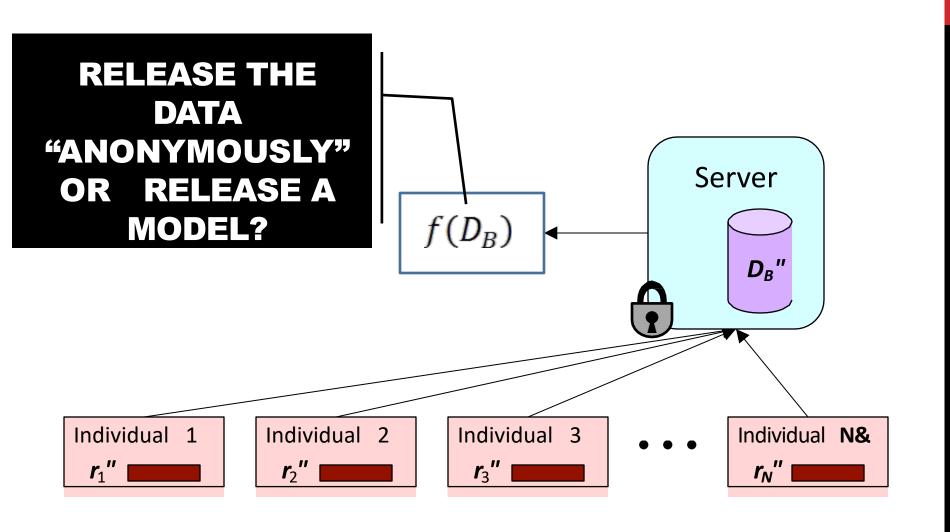
- What exactly does "privacy" mean? When does it apply?
- Could there exist societies without a concept of privacy?

Concretely: at collection "small print" outlines privacy rules

- Most companies have adopted a privacy policy
- E.g. AT&T privacy policy att.com/gen/privacy-policy?pid=2506

Significant legal framework relating to privacy

- UN Declaration of Human Rights, US Constitution
- HIPAA, Video Privacy Protection, Data Protection Acts



WHY ANONYMIZE?

For Data Sharing

- Give real(istic) data to others to study without compromising privacy of individuals in the data
- Allows third-parties to try new analysis and mining techniques not thought of by the data owner

For Data Retention and Usage

- Various requirements prevent companies from retaining customer information indefinitely
- E.g. Google progressively anonymizes IP addresses in search logs
- Internal sharing across departments (e.g. billing → marketing)

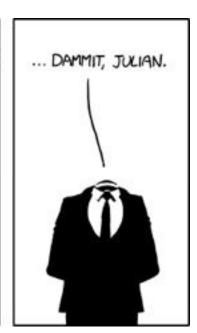
WHY ANONYMIZE?

2.1. Definitions in the EU Legal Context

Directive 95/46/EC refers to anonymisation in Recital 26 to exclude anonymised data from the scope of data protection legislation:

"Whereas the principles of protection must apply to any information concerning an identified or identifiable person; whereas, to determine whether a person is identifiable, account should be taken of all the means likely reasonably to be used either by the controller or by any other person to identify the said person; whereas the principles of protection shall not apply to data rendered anonymous in such a way that the data subject is no longer identifiable; whereas codes of conduct within the meaning of Article 27 may be a useful instrument for providing guidance as to the ways in which data may be rendered anonymous and retained in a form in which identification of the data subject is no longer possible;". 1

Releasing data is bad?



What if we ensure our names and other identifiers are never released?

CASE STUDY: US CENSUS

Raw data: information about every US household

Who, where; age, gender, racial, income and educational data

Why released: determine representation, planning

How anonymized: aggregated to geographic areas (Zip code)

- Broken down by various combinations of dimensions
- Released in full after 72 years

Attacks: no reports of successful deanonymization

Recent attempts by FBI to access raw data rebuffed

Consequences: greater understanding of US population

- Affects representation, funding of civil projects
- Rich source of data for future historians and genealogists

CASE STUDY: NETFLIX PRIZE

Raw data: 100M dated ratings from 480K users to 18K movies

Why released: improve predicting ratings of unlabeled examples

How anonymized: exact details not described by Netflix

- All direct customer information removed
- Only subset of full data; dates modified; some ratings deleted,
- Movie title and year published in full

Attacks: dataset is claimed vulnerable [Narayanan Shmatikov 08]

- Attack links data to IMDB where same users also rated movies
- Find matches based on similar ratings or dates in both

Consequences: rich source of user data for researchers

unclear if attacks are a threat—no lawsuits or apologies yet

- Name
- **422** •

- Zip
- Visit Date
- Diagnosis
- Birth date
- Procedure
- Medication
- Sex
- Total Charge

Medical Data

- Name
- 422
- Visit Date
- Diagnosis
- Procedure
- Medication
- Total Charge

- Zip
- Birth date
- Sex

- Name
- Address
- Date

Registered

- Party
- affiliation
- Date last

voted

Medical Data

- Name
- 422·
- Visit Date
- Diagnosis
- Procedure
- Medication
- Total Charge

- Zip
- Birth date
- Sex

- Name
- Address
- Date

Registered

- Party
- affiliatioon
- Date last voted

 Governor of MA uniquely identified using ZipCode,

Birth Date, and Sex.

Name linked to Diagnosis

Medical Data

Voter List

- Name
- 422 ·
- Visit Date
- Diagnosis
- Procedure
- Medication
- Total Charge

- 7:-
- Zip
- Birth date
- Sex

- Name
- Address
- Date
- Registered
- Party
- affiliatioon
- Date last voted

 87 % of US population uniquely identified using ZipCode,

Birth Date, and Sex.

ted

Medical Data

Voter List

Quasi-Identifiers

AOL DATA PUBLISHING FIASCO ...

AOL "anonymously" released a list of 21 million web search queries.

7

Ashwin222 | Uefa cup

Ashwin222 Uefa champions league

Ashwin222 Champions league final

Ashwin222 | Champions league final 2007

Pankaj156 exchangeability

Pankaj156 Proof of deFinitti s theorem

Cox12345 Zombie games

Cox12345 | Warcraft

Cox12345 Beatles anthology

Cox12345 | Ubuntu breeze

Ashwin222 | Grammy 2008 nominees

Ashwin222 | Amy Winehouse rehab

AOL DATA PUBLISHING FIASCO ...

AOL "anonymously" released a list of 21 million web search queries.

UserIDs were replaced by random numbers ...

865712345	Uefa cup
865712345	Uefa champions league
865712345	Champions league final
865712345	Champions league final 2007
236712909	exchangeability
236712909	Proof of deFinitti s theorem
112765410	Zombie games
112765410	Warcraft
112765410	Beatles anthology
112765410	Ubuntu breeze
865712345	Grammy 2008 nominees
865712345	Amy Winehouse rehab

Privacy Breach

[NYTimes 2006]

A Face Is Exposed for AOL Searcher No. 4417749

By MICHAEL BARBARO and TOM ZELLER Jr. Published: August 9, 2006

CASE STUDY: AOL SEARCH DATA

Raw data: 20M search queries for 650K users from 2006

Why released: allow researchers to understand search patterns

How anonymized: user identifiers removed

All searches from same user linked by an arbitrary identifier

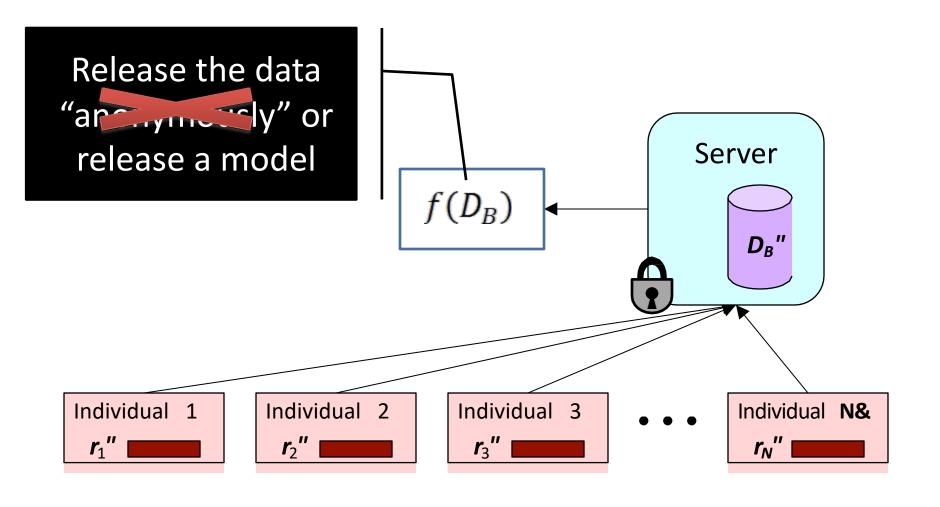
Attacks: many successful attacks identified individual users

- Ego-surfers: people typed in their own names
- Zip codes and town names identify an area
- NY Times identified 4417749 as 62yr old GA widow [Barbaro Zeller 06]

Consequences: CTO resigned, two researchers fired

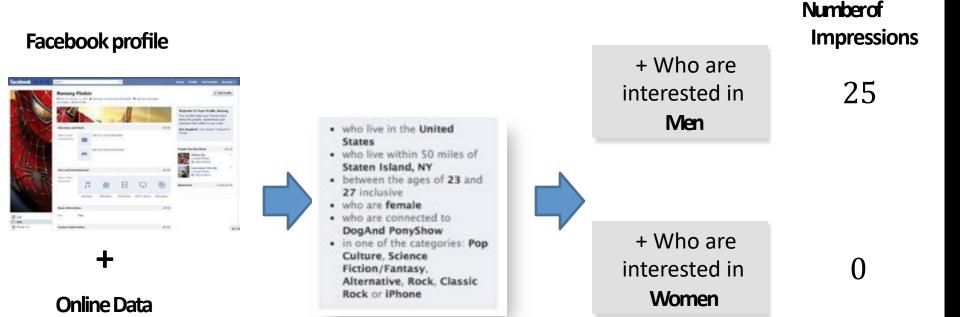
Well-intentioned effort failed due to inadequate anonymization

CAN WE RELEASE A MODEL ALONE?



RELEASING A MODEL CAN ALSO BE BAD

[Korolova JPC 2011]



Facebook's learning algorithm uses private information to predict match to ad

Model Inversion

[Frederickson et al., USENIX Security 2014]

 An attacker, given the model and some demographic information about a patient, can predict the patient's genetic markers.

> We show, however, that warfarin models do pose a privacy risk (Section 3). To do so, we provide a general model inversion algorithm that is optimal in the sense that it minimizes the attacker's expected misprediction rate given the available information. We find that when one knows a target patient's background and stable dosage, their genetic markers are predicted with significantly better accuracy (up to 22% better) than guessing based on marginal distributions. In fact, it does almost as well as regression models specifically trained to predict these markers (only ~5% worse), suggesting that model inversion can be nearly as effective as learning in an "ideal" setting. Lastly, the inverted model performs measurably better for members of the training cohort than others (yielding an increased 4% accuracy) indicating a leak of information specifically about those patients.

MODELS OF ANONYMIZATION

Interactive Model (akin to statistical databases)

- Data owner acts as "gatekeeper" to data
- Researchers pose queries in some agreed language
- Gatekeeper gives an (anonymized) answer, or refuses to answer

"Send me your code" model

- Data owner executes code on their system and reports result
- Cannot be sure that the code is not malicious

Offline, aka "publish and be damned" model

- Data owner somehow anonymizes data set
- Publishes the results to the world, and retires
- Our focus in this tutorial seems to model most real releases

OBJECTIVES FOR ANONYMIZATION

Prevent (high confidence) inference of associations

- Prevent inference of salary for an individual in "census"
- Prevent inference of individual's viewing history in "video"
- Prevent inference of individual's search history in "search"
- All aim to prevent linking sensitive information to an individual

Prevent inference of presence of an individual in the data set

- Satisfying "presence" also satisfies "association" (not vice-versa)
- Presence in a data set can violate privacy (eg STD clinic patients)

Have to model what knowledge might be known to attacker

- Background knowledge: facts about the data set (X has salary Y)
- Domain knowledge: broad properties of data (illness Z rare in men)



UTILITY

Anonymization is meaningless if utility of data not considered

- The empty data set has perfect privacy, but no utility
- The original data has full utility, but no privacy

What is "utility"? Depends what the application is...

- For fixed query set, can look at max, average distortion
- Problem for publishing: want to support unknown applications!
- Need some way to quantify utility of alternate anonymizations

PRIVACY IS NOT ANONYMITY

- Bob's record is indistinguishable from records of other Cancer patients
 - We can infer Bob has Cancer!
- "New Information" principle
 - Privacy is breached if releasing D (or f(D)) allows an adversary to learn sufficient new information.
 - New Information = distance(adversary's prior belief, adversary's posterior belief after seeing D)
 - New Information can't be 0 if the output D or f(D) should be useful.

PRIVACY DEFINITIONS

- Many privacy definitions
 - L-diversity, T-closeness, M-invariance, ε- Differential privacy, Ε- Privacy, ...
- Definitions differs in
 - What information is considered sensitive
 - Specific attribute (disease) vs all possible properties of an individual
 - What is the adversary's prior
 - All values are equally likely vs Adversary knows everything about all but one individuals
 - How is new information measured
 - Information theoretic measures
 - Pointwise absolute distance
 - Pointwise relative distance

NO FREE LUNCH

- Why can't we have a single definition for privacy?
 - For every adversarial prior and every property about an individual, new information is bounded by some constant.
- No Free Lunch Theorem: For every algorithm that outputs a D
 with even a sliver of utility, there is some adversary with a prior
 such that privacy is not guaranteed.

RANDOMIZED RESPONSE MODEL

- N respondents asked a sensitive "yes/no" question.
- Surveyor wants to compute fraction π who answer "yes".
- Respondents don't trust the surveyor.
- What should the respondents do?

RANDOMIZED RESPONSE MODEL

- Flip a coin
 - heads with probability p, and
 - tails with probability 1-p (p > $\frac{1}{2}$)
- Answer question according to the following table:

	True Answer = Yes	True Answer = No
Heads	Yes	No
Tails	No	Yes

SAMPLE MICRODATA

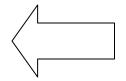
SSN	Zip	Age	Nationality	Disease
631-35-1210	13053	28	Russian	Heart
051-34-1430	13068	29	American	Heart
120-30-1243	13068	21	Japanese	Viral
070-97-2432	13053	23	American	Viral
238-50-0890	14853	50	Indian	Cancer
265-04-1275	14853	55	Russian	Heart
574-22-0242	14850	47	American	Viral
388-32-1539	14850	59	American	Viral
005-24-3424	13053	31	American	Cancer
248-223-2956	13053	37	Indian	Cancer
221-22-9713	13068	36	Japanese	Cancer
615-84-1924	13068	32	American	Cancer

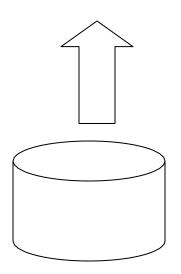
REMOVING SSN ...

Zip	Age	Nationality	Disease
13053	28	Russian	Heart
13068	29	American	Heart
13068	21	Japanese	Viral
13053	23	American	Viral
14853	50	Indian	Cancer
14853	55	Russian	Heart
14850	47	American	Viral
14850	59	American	Viral
13053	31	American	Cancer
13053	37	Indian	Cancer
13068	36	Japanese	Cancer
13068	32	American	Cancer

LINKAGE ATTACKS

Quasi-Identifier





D			
Piih	וור	Int∩rn	nation
ıuv			iation

Zip	Age	Nationality	Disease
13053	28	Russian	Heart
13068	29	American	Heart
13068	21	Japanese	Viral
13053	23	American	Viral
14853	50	Indian	Cancer
14853	55	Russian	Heart
14850	47	American	Viral
14850	59	American	Viral
13053	31	American	Cancer
13053	37	Indian	Cancer
13068	36	Japanese	Cancer
13068	32	American	Cancer

K-ANONYMITY

[Samarati et al, PODS 1998]

- Generalize, modify, or distort quasi-identifier values so that no individual is uniquely identifiable from a group of k
- In SQL, table T is k-anonymous if each

```
SELECT COUNT(*)
FROM T
GROUP BY Quasi-Identifier
```

is **≥ k**

Parameter k indicates the "degree" of anonymity

EXAMPLE: GENERALIZATION (COARSENING)

Zip	Age	Nationality	Disease
13053	28	Russian	Heart
13068	29	American	Heart
13068	21	Japanese	Flu
13053	23	American	Flu
14853	50	Indian	Cancer
14853	55	Russian	Heart
14850	47	American	Flu
14850	59	American	Flu
13053	Faui.	olongo Class. (Charle

13053

13068

13068

equivalence Class: Group of k-anonymous records that share the same value for Quasi-identifier attribtutes

Zip	Age	Nationality	Disease
130**	<30	*	Heart
130**	<30	*	Heart
130**	<30	*	Flu
130**	<30	*	Flu
1485*	>40	*	Cancer
1485*	>40	*	Heart
1485*	>40	*	Flu
1485*	>40	*	Flu
130**	30-40	*	Cancer
130**	30-40	*	Cancer
130**	30-40	*	Cancer
130**	30-40	*	Cancer

K-ANONYMITY THROUGH MICROAGGREGATION

Zip	Age	Nationality	Disease
13053	28	Russian	Heart
13068	29	American	Heart
13068	21	Japanese	Flu
13053	23	American	Flu
14853	50	Indian	Cancer
14853	55	Russian	Heart
14850	47	American	Flu
14850	59	American	Flu
13053	31	American	Cancer
13053	3 7	Indian	Cancer
13068	36	Japanese	Cancer
13068	32	American	Cancer

Zip	Age	Nationality	Disease
Z	2 Heart and 2 Flu		
4 tuples Zip = 1485* 47 < Age < 59 Average(age) = 53			1 Cancer, 1 Heart and 2 Flu
Av	All Cancer patients		

DIFFERENTIAL PRIVACY

 Typically achieved by adding controlled noise (e.g., Laplace Mechanism)

- Some adoption in the wild:
 - US Census Bureau
 - Google, Apple, and some others have used this for collecting data
- Issues:
 - Effectiveness in general still unclear

OUTLINE

Informed Consent

Reproducibility

p-value Hacking

Who owns the data?

Privacy & Anonymity

Debugging Data Science

Algorithmic fairness

Other Issues

Data Science in Industry

Traditional debugging

Traditional debugging of programs is relatively straightforward

You have some desired input/output pairs

You have a mental model (or maybe something more formal) of how each step in the algorithm "should" work

You trace through the execution of the program (either through a debugger or with print statement), to see where the state diverges from your mental model (or to discover your mental model is wrong)

Data science debugging

You have some desired input/output pairs

Your mental model is that an ML algorithm should work because ... math? ... magic?

What can you trace through to see why it may not be working? Not very useful to step through an implementation of logistic regression...

Debugging data science vs. machine learning

Many of the topics here overlap with material on "debugging machine learning"

We are indeed going to focus largely on debugging data science prediction tasks (debugging web scraping, etc, is much more like traditional debugging)

But,

The first step of data science debugging

Step 1: determine if your problem is impossible

There are plenty of tasks that would be really nice to be able to predict, and absolutely no evidence that there the necessary signals to predict them (see e.g., predicting stock market from Twitter)

But, hope springs eternal, and it's hard to prove a negative...

A good proxy for impossibility

Step 1: determine if your problem is impossible see if you can solve your problem manually

Create an interface where you play the role of the prediction algorithm, you need to make the predictions of the outputs given the available inputs

To do this, you'll need to provide some intuitive way of visualizing what a complete set of input features looks like: tabular data for a few features, raw images, raw text, etc

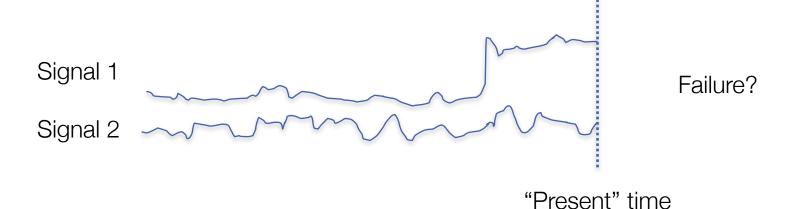
Just like a machine learning algorithm, you can refer to training data (where you know the labels), but you can't peak at the answer on your test/validation set

An example: predictive maintenance

An example task: you run a large factory and what to predict whether any given machine will fail within the next 90 days

You're given signals monitoring the state of this device

Your interface: visualize the signals (but not whether there was a failure or not), and see if you can identify whether or not a machine is about to fail?



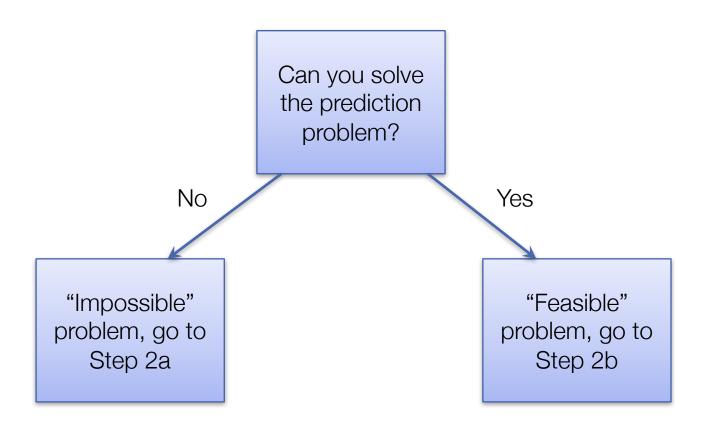
What about "superhuman" machine learning

It's a common misconception that machine learning will *outperform* human experts on most tasks

In reality, the benefit from machine learning often doesn't come from superhuman performance in most cases, it comes from the ability to scale up expert-level performance extremely quickly

If you can't make good predictions, neither will a machine learning algorithm (at least the first time through, and probably always)

Decision diagram



Dealing with "impossible" problems

So you've built a tool to manually classify examples, run through many cases (or had a domain expert run through them), and you get poor performance

What do you do?

You do *not* try to throw more, bigger, badder, machine learning algorithms at the problem

Instead you need to change the problem by: 1) changing the input (i.e., the features), 2) changing the output (i.e., the problem definition)

Changing the input (i.e., adding features)

The fact that we can always add more features is what makes these problems "impossible" (with quotes) instead of impossible (no quotes)

You can always hold out hope that you just one data source away from finding the "magical" feature that will make your problem easy

But you probably aren't... adding more data is good, but:

- 1. Do spot checks (visually) to see if this new features can help *you* differentiate between what you were previously unable to predict
- 2. Get advice from domain experts, see what sorts of data source they use in practice (if people are already solving the problem)

Changing the output (i.e., changing the problem)

Just make the problem easier! (well, still need to preserve the character of the data science problem)

A very useful procedure: instead of trying to predict the future, try to predict what an expert would predict given the features you have available

E.g., for predictive maintenance this shifts the question from: "would this machine fail?" to "would an expert choose to do maintenance on this machine?"

With this strategy we already have an existence proof that it's feasible

Changing the output #2

Move from a question of getting "good" prediction to a question of characterizing the uncertainty of your predicts

Seems like a cop-out, but many tasks are *inherently* stochastic, the best you can do is try to quantify the likely uncertainty in output given the input

E.g.: if 10% of all machines fail within 90 days, it can still be really valuable to predict if whether a machine will fail with 30% probability

Dealing with feasible problems

Good news! Your prediction problem seems to be solvable (because you can solve it)

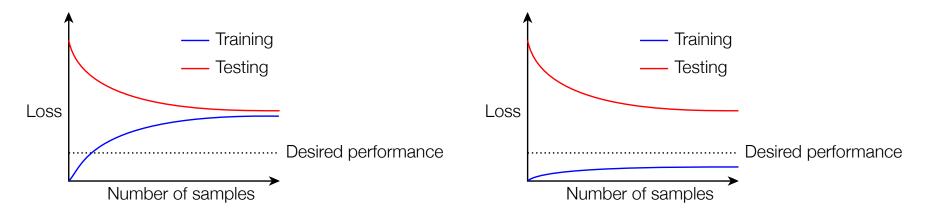
You run your machine learning algorithm, and find that it doesn't work (performs worse than you do)

Again, you can try just throwing more algorithms, data, features, etc, at the problem, but this is unlikely to succeed

Instead you want to build diagnostics that can check what the problem may be

Characterizing bias vs. variance

Consider the training and testing loss of your algorithm (often plotting over different numbers of samples), to determine if you problem is one of high bias or high variance

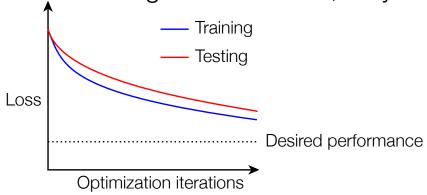


For high bias, add features based upon your own intuition of how you solved the problem

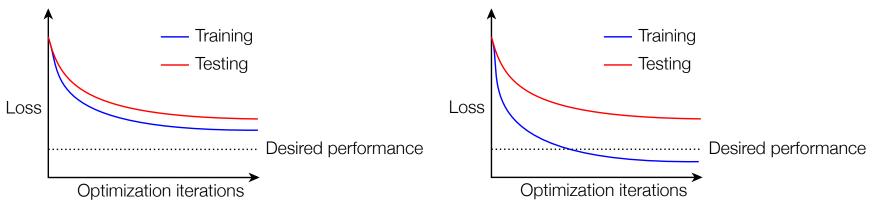
For high variance, add data or remove features (keeping features based upon your intuition)

Characterizing optimization performance

It is a much less common problem, but you may want to look at training/testing loss versus algorithm iteration, may look like this:

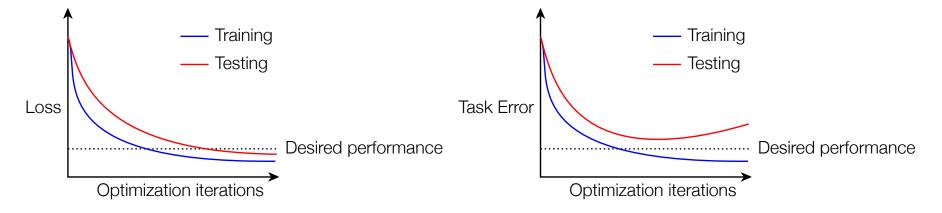


But it probably looks like this:



Consider loss vs. task error

Remember that machine learning algorithms try to minimize some loss, which may be different from the task error you actually want to optimize



This is common when dealing e.g. with imbalanced data sets for which cost of different classifications is very different

THE DREAM

You run your ML algorithm(s) and it works well (?!)

Still: be skeptical ...

Very easy to accidentally let your ML algorithm cheat:

- Peaking (train/test bleedover)
- Including output as an input feature explicitly
- Including output as an input feature implicitly

Try to solve the problem by hand;

Try to interpret the ML algorithm / output

Continue being skeptical. Always be skeptical.

OUTLINE

Informed Consent

Reproducibility

p-value Hacking

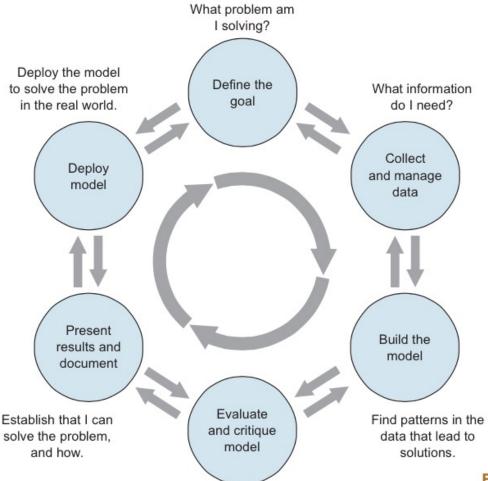
Who owns the data?

Privacy & Anonymity

Algorithmic fairness

Data validity/provenance

DATA SCIENCE LIFECYCLE: AN ALTERNATE VIEW



Does the model solve

my problem?

Figure 1.1 The lifecycle of a data science project: loops within loops

Fairness through blindness:

Don't let an algorithm look at protected attributes

Examples currently in use ??????????

- Race
- Gender
- Sexuality
- Disability
- Religion

Problems with this approach ????????

"After all, as the former CPD [Chicago Police Department] computer experts point out, the algorithms in themselves are neutral. This program had absolutely nothing to do with race... but multi-variable equations,' argues Goldstein. Meanwhile, the potential benefits of predictive policing are profound."

If there is bias in the training data, the algorithm/ML technique will pick it up

- Especially social biases against minorities
- Even if the the protected attributes are not used

Sample sizes tend to vary drastically across groups

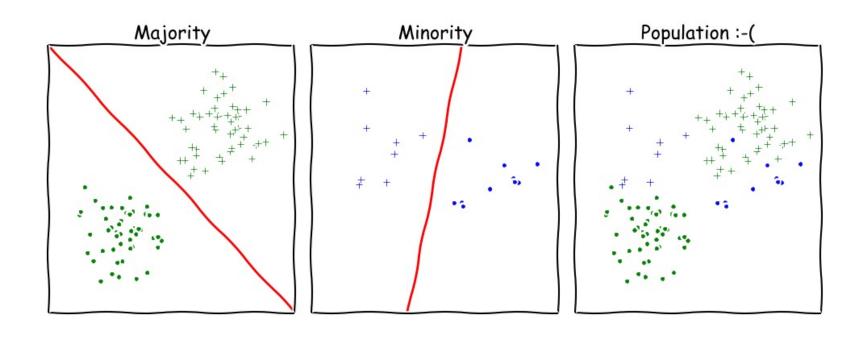
- Models for the groups with less representation are less accurate
- Hard to correct this, and so fundamentally unfair
- e.g., a classifier that performs no better than coin toss on a minority group, but does very well on a majority group

Cultural Differences

- Consider a social network that tried to classify user names into real and fake
- Diversity in names differs a lot in some cases, short common names are 'real', in others long unique names are 'real'

Undesired complexity

 Learning combinations of linear classifiers much harder than learning linear classifiers



Demographic parity:

- A decision must be independent of the protected attribute
- E.g., a loan application's acceptance rate is independent of an applicant's race (but can be dependent on non-protected features like salary)

Formally: binary decision variable C, protected attribute A

• P{ C = 1 | A = 0 } = P{ C = 1 | A = 1 }

Membership in a protected class should have no correlation with the final decision.

Problems ????????

What if the decision isn't the thing that matters?

"Consider, for example, a luxury hotel chain that renders a promotion to a subset of wealthy whites (who are likely to visit the hotel) and a subset of less affluent blacks (who are unlikely to visit the hotel). The situation is obviously quite icky, but demographic parity is completely fine with it so long as the same fraction of people in each group see the promotion."

Demographic parity allows classifiers that select qualified candidates in the "majority" demographic and unqualified candidate in the "minority" demographic, within a protected attribute, so long as the expected percentages work out.

More: http://blog.mrtz.org/2016/09/06/approaching-fairness.html

FATML

This stuff is really tricky (and really important).

It's also not solved, even remotely, yet!

New community: Fairness, Accountability, and Transparency in Machine Learning (aka **FATML**)

"... policymakers, regulators, and advocates have expressed fears about the potentially discriminatory impact of machine learning, with many calling for further technical research into the dangers of inadvertently encoding bias into automated decisions."

Fairness, Accountability, and Transparency in Machine Learning

F IS FOR FAIRNESS

In large data sets, there is always proportionally less data available about minorities.

Statistical patterns that hold for the majority may be invalid for a given minority group.

Fairness can be viewed as a measure of diversity in the combinatorial space of sensitive attributes, as opposed to the geometric space of features.

A IS FOR ACCOUNTABILITY

Accountability of a mechanism implies an obligation to report, explain, or justify algorithmic decision-making as well as mitigate any negative social impacts or potential harms.

- Current accountability tools were developed to oversee human decision makers
- They often fail when applied to algorithms and mechanisms instead

Example, no established methods exist to judge the intent of a piece of software. Because automated decision systems can return potentially incorrect, unjustified or unfair results, additional approaches are needed to make such systems accountable and governable.

T IS FOR TRANSPARENCY

Automated ML-based algorithms make many important decisions in life.

Decision-making process is opaque, hard to audit

A transparent mechanism should be:

- understandable;
- more meaningful;
- more accessible; and
- more measurable.

DATA COLLECTION

What data should (not) be collected

Who owns the data

Whose data can (not) be shared

What technology for collecting, storing, managing data

Whose data can (not) be traded

What data can (not) be merged

What to do with prejudicial data

DATA MODELING

Data is biased (known/unknown)

- Invalid assumptions
- Confirmation bias

Publication bias

WSDM 2017: https://arxiv.org/abs/1702.00502

Badly handling missing values

DEPLOYMENT

Spurious correlation / over-generalization

Using "black-box" methods that cannot be explained

Using heuristics that are not well understood

Releasing untested code

Extrapolating

Not measuring lifecycle performance (concept drift in ML)

GUIDING PRINCIPLES

Start with clear user need and public benefit

Use data and tools which have minimum intrusion necessary

Create robust data science models

Be alert to public perceptions

Be as open and accountable as possible

Keep data secure

SOME REFERENCES

Presentation on ethics and data analysis, Kaiser Fung @ Columbia Univ. http://andrewgelman.com/wp-content/uploads/2016/04/fung_ethics_v3.pdf

O'Neil, Weapons of math destruction.

https://www.amazon.com/Weapons-Math-Destruction-Increases-Inequality/dp/0553418815

UK Cabinet Office, Data Science Ethical Framework.

https://www.gov.uk/government/publications/data-science-ethical-framework

Derman, Modelers' Hippocratic Oath.

http://www.iijournals.com/doi/pdfplus/10.3905/jod.2012.20.1.035

Nick D's MIT Tech Review Article.

https://www.technologyreview.com/s/602933/how-to-hold-algorithms-accountable/

OUTLINE

Informed Consent

Reproducibility

p-value Hacking

Who owns the data?

Privacy & Anonymity

Algorithmic fairness

Some other issues

Data Science in Industry

DATA VALIDITY/PROVENANCE

Provenance: a history of how a data item or a dataset came to be

Also called lineage

Crucial to reason about the validity of any results, or to do auditing

Lot of research over the years

File system/OS-level provenance, data provenance, workflow provenance

Increasing interest in industry, but pretty nascent field

INTERPRETABILITY/E XPLAINABILITY

Can you explain the results of an ML model?

Easy for decision trees (relatively), nearly impossible for deep learning

Can't use black box models in many domains

e.g., health care, policy-making

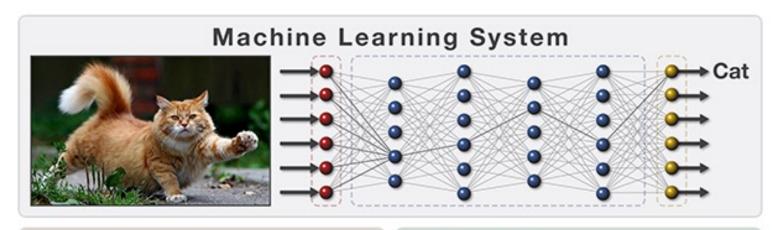
Several recent proposals on simpler models, but those tend to have high error rates

Other proposals on trying to interprete more complex models

- Evolving area…
- Big DARPA project: Explainable AI

INTERPRETABILITY/E XPLAINABILITY

From https://www.darpa.mil/program/explainable-artificial-intelligence

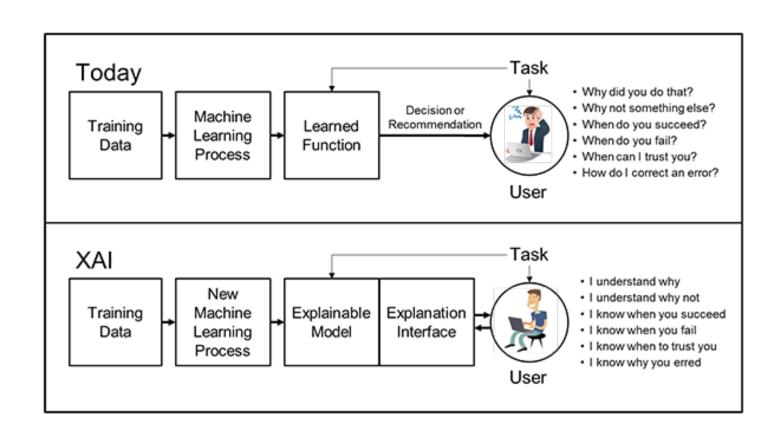


This is a cat.

Current Explanation

INTERPRETABILITY/E XPLAINABILITY

From https://www.darpa.mil/program/explainable-artificial-intelligence



OUTLINE

Informed Consent

Reproducibility

p-value Hacking

Who owns the data?

Privacy & Anonymity

Algorithmic fairness

Some other issues

Data Science in Industry

WHAT IS A DATA SCIENTIST?

Many types of "data scientists" in industry ...

- Business analysts, renamed
 - "... someone who analyzes an organization or business domain (real or hypothetical) and documents its business or processes or systems, assessing the business model or its integration with technology." – Wikipedia
- Statisticians
- Machine learning engineer
- Backend tools developer

KEY DIFFERENCES

Classical statistics vs machine learning approaches

(Two are nearly mixed in most job calls you will see.)

Developing data science tools vs. doing data analysis

Working on a core business product vs more nebulous "identification of value" for the firm

FINDING A JOB

Make a personal website.

- Free hosting options: GitHub Pages, Google Sites
- Pay for your own URL (but not the hosting).
- Make a clean website, and make sure it renders on mobile:
 - Bootstrap: https://getbootstrap.com/
 - Foundation: http://foundation.zurb.com/

Highlight relevant coursework, open source projects, tangible work experience, etc

Highlight tools that you know (not just programming languages, but also frameworks like TensorFlow and general tech skills)

"REQUIREMENTS"

Data science job postings – and, honestly, CS postings in general – often have completely nonsense requirements

- 1. The group is filtering out some noise from the applicant pool
- 2. Somebody wrote the posting and went buzzword crazy

In most cases (unless the position is a team lead, pure R&D, or a very senior role) you can work around requirements:

- A good, simple website with good, clean projects can work wonders here ...
- Reach out and speak directly with team members
- Alumni network, internship network, online forums

INTERVIEWING

We saw that there is no standard for being a "data scientist" – and there is also no standard interview style ...

... but, generally, you'll be asked about the five "chunks" we covered in this class, plus core CS stuff:

- Software engineering questions
- Data collection and management questions (SQL, APIs, scraping, newer DB stuff like NoSQL, Graph DBs, etc)
- General "how would you approach ..." EDA questions
- Machine learning questions ("general" best practices, but you should be able to describe DTs, RFs, SVM, basic neural nets, KNN, OLS, boosting, PCA, feature selection, clustering)
- Basic "best practices" for statistics, e.g., hypothesis testing

Take-home data analysis project (YMMV)

GRADUATE SCHOOL, ACADEMIA, R&D, ...

Data science isn't really an academic discipline by itself, but it comes up everywhere within and without CS

Modern science is built on a "CS and Statistics stack" ...

Academic work in the area:

- Outside of CS, using techniques from this class to help fundamental research in that field
- Within CS, fundamental research in:
 - Machine learning
 - Statistics (non-pure theory)
 - Databases and data management
 - Incentives, game theory, mechanism design
- Within CS, trying to automate data science (e.g., Google Cloud's Predictive Analytics, "Automatic Statistician," ...)

CONCLUSIONS

Final project due in 2 weeks

Will send out a survey in a few days – please complete it

Sign up for remaining courses

Converting to MS