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QUICK RECAP FROM 
LAST CLASS …



RANDOM FORESTS
Decision trees are very interpretable, but may be brittle to 
changes in the training data, as well as noise
Random forests are an ensemble method that:
• Resamples the training data;

• Builds many decision trees; and

• Averages predictions of trees to classify.
This is done through bagging and random feature selection
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BAGGING
Bagging: Bootstrap aggregation
Resampling a training set of size n via the bootstrap:
• Sample with replacement n elements
General scheme for random forests:
1. Create B bootstrap samples, {Z1, Z2, …, ZB}
2. Build B decision trees, {T1, T2, …, TB}, from {Z1, Z2, …, ZB}
Classification/Regression:
1. Each tree Tj predicts class/value yj

2. Return average 1/B Σj={1,...,B} yj for regression, 
or majority vote for classification
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obs_id ft_1 ft_2
1 12.2 puppy
2 34.5 dog
3 8.1 cat

Original training 
dataset (Z):

obs_id ft_1 ft_2
3 8.1 cat
2 34.5 dog
3 8.1 cat

obs_id ft_1 ft_2
1 12.2 puppy
2 34.5 dog
1 12.2 puppy

obs_id ft_1 ft_2
1 12.2 puppy
1 12.2 puppy
3 8.1 cat

Z1 Z2 ZB

B Bootstrap 
samples Zj

Aggregate/Vote

T1 T2 TBTj

Class estimate or predicted value



RANDOM ATTRIBUTE 
SELECTION
We get some randomness via bootstrapping
• We like this!  Randomness increases the bias of the forest 

slightly at a huge decrease in variance (due to averaging)

We can further reduce correlation between trees by:
1. For each tree, at every split point …
2. … choose a random subset of attributes …
3. … then split on the “best” (entropy, Gini) within only that 

subset
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RANDOM FORESTS IN 
SCIKIT-LEARN

Can we get even more random?!
Extremely randomized trees (ExtraTreesClassifier) 
do bagging, random attribute selection, but also:
1. At each split point, choose random splits
2. Pick the best of those random splits
Similar bias/variance performance to RFs, but can 
be faster computationally
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from sklearn.ensemble import RandomForestClassifier

# Train a random forest of 10 default decision trees
X = [[0, 0], [1, 1]]
Y = [0, 1]
clf = RandomForestClassifier(n_estimators=10)
clf = clf.fit(X, Y)



QUICK ASIDE FOR PROJECT #3
Precision P:

#correct positive results / #positive results returned
Recall R:

#correct positive results / #all possible positive results
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QUICK ASIDE FOR PROJECT #3
F-Score F:

weighted average of the precision and recall of a test
F1: (harmonic) mean of precision and recall:

Can be parameterized to attach higher importance to recall:

9



TODAY’S LECTURE

Data 
collection

Data 
processing

Exploratory 
analysis

&
Data viz

Analysis, 
hypothesis 
testing, & 

ML

Insight & 
Policy 

Decision
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FILLING IN THE GAPS:
NONLINEAR REGRESSION & 

REGULARIZATION
Thanks: Zico Kolter
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Peak demand vs. temperature (summer months)

6
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Peak demand vs. temperature (all months)
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Linear regression fit
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“Non-linear” regression

Thus far, we have illustrated linear regression as “drawing a line through 
through the data”, but this was really a function of our input features

Though it may seem limited, linear regression algorithms are quite 
powerful when applied to non-linear features of the input data, e.g.

! "
=

High-Temperature
" 2

High-Temperature
"

1

Same hypothesis class as before ℎ% ! = &' !, but now prediction will 
be a non-linear function of base input (e.g. a quadratic function)

Same least-squares solution & = (' ( −1(' +

9
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Polynomial features of degree 2

10
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Code for fitting polynomial

The only element we need to add to write this non-linear regression is the 
creation of the non-linear features

Output learned function:
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x = df_daily.loc[:,"Temperature"]
min_x, rng_x = (np.min(x), np.max(x) - np.min(x))
x = 2*(x - min_x)/rng_x - 1.0
y = df_daily.loc[:,"Load"]

X = np.vstack([x**i for i in range(poly_degree,-1,-1)]).T
theta = np.linalg.solve(X.T.dot(X), X.T.dot(y))

x0 = 2*(np.linspace(xlim[0], xlim[1],1000) - min_x)/rng_x - 1.0
X0 = np.vstack([x0**i for i in range(poly_degree,-1,-1)]).T
y0 = X0.dot(theta)
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Polynomial features of degree 3

12
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Polynomial features of degree 4

13
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Polynomial features of degree 10

14
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Polynomial features of degree 50
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Generalization error

The problem we the canonical machine learning problem is that we don’t 
really care about minimizing this objective on the given data set

minimize%   ∑ ℓ ℎ% ! " , + "
0

"=1

What we really care about is how well our function will generalize to new 
examples that we didn’t use to train the system (but which are drawn 
from the “same distribution” as the examples we used for training)

The higher degree polynomials exhibited overfitting: they actually have 
very low loss on the training data, but create functions we don’t expect to 
generalize well
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Cartoon version of overfitting

19

As model becomes more complex, training loss always decreases; 
generalization loss decreases to a point, then starts to increase

Loss

Model Complexity

Training
Generalization
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Cross-validation

Although it is difficult to quantify the true generalization error (i.e., the error 
of these algorithms over the complete distribution of possible examples), 
we can approximate it by holdout cross-validation

Basic idea is to split the data set into a training set and a holdout set

Train the algorithm on the training set and evaluate on the holdout set

20

Holdout / validation 
set (e.g. 30%)Training set (e.g. 70%)

All data
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Illustrating cross-validation

23
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Training and cross-validation loss by degree

24



27

Regularization

We have seen that the degree of the polynomial acts as a natural 
measure of the “complexity” of the model, higher degree polynomials are 
more complex (taken to the limit, we fit any finite data set exactly)

But fitting these models also requires extremely large coefficients on these 
polynomials

For 50 degree polynomial, the first few coefficients are

& = −3.88×106, 7.60×106, 3.94×106, −2.60×107, …

This suggests an alternative way to control model complexity: keep the 
weights small (regularization)
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Regularized loss minimization

This leads us back to the regularized loss minimization problem we saw 
before, but with a bit more context now:

minimize%   ∑ ℓ ℎ% ! " , + "
0

"=1
+

9
2

& 2
2

This formulation trades off loss on the training set with a penalty on high 
values of the parameters

By varying 9 from zero (no regularization) to infinity (infinite regularization, 
meaning parameters will all be zero), we can sweep out different sets of 
model complexity
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Regularized least squares

For least squares, there is a simple solution to the regularized loss 
minimization problem

minimize%  
1
2

(& − + 2
2 +

9
2

& 2
2

Taking gradients by the same rules as before gives:

:%
1
2

(& − + 2
2 +

9
2

& 2
2 = (' (& − + + 9&

Setting gradient equal to zero leads to the solution

(' (& + 9& = (' + ⟹   & = (' ( + 9< −1(' +

Looks just like the normal equations but with an additional 9< term
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50 degree polynomial fit
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50 degree polynomial fit – 9 = 1
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Training/cross-validation loss by regularization

34
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Notation for more general features

We previously described polynomial features for a single raw input, but if 
our raw input is itself multi-variate, how do we define polynomial features?

Deviating a bit from past notion, for precision here we’re going to use 
! " ∈ ℝ= to denote the raw inputs, and > " ∈ ℝ2 to denote the input 
features we construct (also common to use the notation > ! " )

We’ll also drop (?) superscripts, but important to understand we’re 
transforming each feature this way

E.g., for the high temperature:

! = High-Temperature , > =

!2

!
1

37
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Polynomial features in general

One possibility for higher degree polynomials is to just use an 
independent polynomial over each dimension (here of degree @)

! ∈ ℝ= ⟹ > = 

!1
A

⋮
!1
⋮

!=
A

⋮
!=
1

∈ ℝ=A+1

But this ignores cross terms between different features, i.e., terms like 
!1!2

2!=

38
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Polynomial features in general

A better generalization of polynomials is to include all polynomial terms 
between raw inputs up to degree @

! ∈ ℝ= ⟹ > = ∏ !"
DE ∶  ∑ G"

2

"=1
≤ @

=

"=1
∈ ℝ

=+A
=

Code to generate all polynomial features with degree exactly @:

Code to generate all polynomial features with degree up to @

39

from itertools import combinations_with_replacement
[np.prod(a) for a in combinations_with_replacement(x, d)]

[np.prod(a) for i in range(d+1) for a in combinations_with_replacement(x,i)]

combinations_with_replacement(p,r):
r-length tuples, in sorted order, with replacement
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Code for general polynomials

The following code efficiently (relatively) generates all polynomials up to 
degree @ for an entire data matrix (

It is using the same logic as above, but applying it to entire columns of 
the data at a time, and thus only needs one call to 
combinations_with_replacement

40

def poly(X,d):
return np.array([reduce(operator.mul, a, np.ones(X.shape[0])) 

for i in range(1,d+1)
for a in combinations_with_replacement(X.T, i)]).T
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Radial basis functions (RBFs)

For ! ∈ ℝ=, select some set of I centers, J 1 ,… , J K (we’ll discuss 
shortly how to select these), and create features

> = exp −
! − J "

2
2

2L2 : ? = 1,… , I  ⋃  1
�

�
∈ ℝK+1

Very important: need to normalize columns of ( (i.e., different features), 
to all be the same range, or distances wont be meaningful

(Hyper)parameters of the features include the choice of the I centers, and 
the choice of the bandwidth L

Choose centers, i.e., to be a uniform grid over input space, can choose L
e.g. using cross validation (don’t do this, though, more on this shortly)

41
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Example radial basis function

Example:
! = High − Temperature , 

 

J 1
= 20 , J 2

= 25 ,… , J 16
= 95 , L = 10

Leads to features:

> =

exp (− High-Temperature − 20
2
/200)

⋮
exp (− High-Temperature − 95

2
/200)

1

42
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Code for generating RBFs

The following code generates a complete set of RBF features for an entire 

data matrix ( ∈ ℝ0×= and matrix of centers J ∈ ℝK×=

Important “trick” is to efficiently compute distances between all data 
points and all centers

43

def rbf(X,mu,sig):
sqdist = (-2*X.dot(mu.T) +

np.sum(X**2,axis=1)[:,None] +
np.sum(mu**2,axis=1)

return np.exp(-sqdist/(2*sig**2))
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Difficulties with general features

The challenge with these general non-linear features is that the number of 
potential features grows very quickly in the dimensionality of the raw input

Polynomials: 6-dimensional raw input ⟹ 6 + @
6 = N @= total 

features (for fixed @)

RBFs: 6-dimensional raw input, uniform grid with @ centers over each 

dimension ⟹ @= total features

These quickly become impractical for large feature raw input spaces

44
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Practical polynomials

Don’t use the full set of all polynomials, for anything but very low 
dimensional input data (say 6 ≤ 4)

Instead, form polynomials only of features where you know that the 
relationship may be important:

E.g. Temperature
2 ⋅ Weekday, but not Temperature ⋅ Humidity

For binary raw inputs, no point in every taking powers (!"
2

= !")

These elements do all require some insight into the problem

45
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Practical RBFs

Don’t create RBF centers in a grid over your raw input space (your data 
will never cover an entire high-dimensional space, but will lie on a subset)

Instead, pick centers by randomly choosing I data points in the training 
set (a bit fancier, run k-means to find centers, which we’ll describe later)

Don’t pick L using cross validation

Instead, choose the following (called the median trick)
L = median J " − J P

2, ?, Q = 1, … , I

46
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Nonlinear classification

Just like linear regression, the nice thing about using nonlinear features for 
classification is that our algorithms remain exactly the same as before

I.e., for an SVM, we just solve (using gradient descent)

minimize%   ∑max {1 − + " ⋅ &' ! " , 0}
0

"=1
+

9
2

& 2
2

Only difference is that ! " now contains non-linear functions of the input 
data

48



44

Linear SVM on cancer data set

49
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Polynomial features @ = 2

50
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Polynomial features @ = 3

51
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Polynomial features @ = 10

52
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LEARNING
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Supervised learning paradigm

5

Training Data Machine learning
algorithm Predictions

! 1
, # 1

! 2
, # 2

! 3
, # 3

⋮

Hypothesis function

# ' ≈ ℎ ! '
New example !	

# ̂ = ℎ(!)
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Unsupervised learning paradigm

6

Training Data Machine learning
algorithm Predictions

! 1

! 2

! 3

⋮

Hypothesis function

? ≈ ℎ ! '
New example !	

?= ℎ(!)
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Three elements of unsupervised learning

It turns out the virtually all unsupervised learning algorithms can be 
considered in the same manner as supervised learning:

1. Define hypothesis function

2. Define loss function

3. Define how to optimize the loss function

But, what do a hypothesis function and loss function signify in the 
unsupervised setting?

7



UNSUPERVISED LEARNING
Input features:
Model parameters:

Hypothesis function:                                 ??????????????
Want: approximate input given input, or

Loss function:

52
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Hypothesis and loss functions

The framework seems odd, what does it mean to have a hypothesis 
function approximate the input?

Can’t we just pick ℎ2 ! = !?

The goal of unsupervised learning is to pick some restricted class of 
hypothesis functions that extract some kind of structure from the data 
(i.e., one that does not include the identity mapping above)

In this lecture, we’ll consider two different algorithms that both fit the 
framework: k-means and principal component analysis

9
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K-means graphically

The k-means algorithm is easy to visualize: given some collection of data 
points we want to find 9 centers such that all points are close to at least 
one center

11

: 2
: 1
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K-means in unsupervised framework

Parameters of k-means are the choice of centers 0 = {: 1 ,…: 1 }, 
with : ' ∈ ℝ-

Hypothesis function outputs the center closest to a point !
ℎ2 ! = argmin

;∈{; 1 ,…; > }
: − ! 2

2

Loss function is squared error between input and hypothesis
ℓ ℎ2(!), ! = ℎ2 ! − ! 2

2

Optimization problem is thus

minimize
; 1 ,…; >

 ∑ ℎ2 ! ' − ! '
2
2

8

'=1

12



K-MEANS
Non-convex optimization problem à locally good solutions
Given: dataset x(i), number of clusters k
Initialize k cluster centers:

Repeat until convergence or bored:
1. Compute cluster assignments:

2. Re-compute the new cluster means:

56
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K-means in a few lines of code

Scikit-learn, etc, contains k-means implementations, but again these are 
pretty easy to write

For better implementation, want to check for convergence as well as max 
number of iterations

14

def kmeans(X, k, max_iter=10):
Mu = X[np.random.choice(X.shape[0],k),:]
for i in range(max_iter):

D = (-2*X.dot(Mu.T) + np.sum(X**2,axis=1)[:,None] +
np.sum(Mu**2,axis=1))

C = np.eye(k)[np.argmin(D,axis=1),:]
Mu = C.T.dot(X)/np.sum(C,axis=0)[:,None]

loss = np.linalg.norm(X - Mu[np.argmin(D,axis=1),:])**2
return Mu, C, loss



A (LUCKY) EXAMPLE
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A (LUCKY) EXAMPLE
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A (LUCKY) EXAMPLE

60
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Possibility of local optima

Since the k-means objective function has local optima, there is the 
chance that we convert to a less-than-ideal local optima

Especially for large/high-dimensional datasets, this is not hypothetical: k-
means will usually converge to a different local optima depending on its 
starting point

18
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Convergence of k-means (bad)

19
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Convergence of k-means (bad)

20
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Convergence of k-means (bad)

21
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Addressing poor clusters

Many approaches to address potential poor clustering: e.g. randomly 
initialize many times, take clustering with lowest loss

A common heuristic, k-means++: when initializing means, don’t select 

: ' randomly from all clusters, instead choose : ' sequentially, sampled 
with probability proportion to the minimum squared distance to all other 
centroids

After these centers are initialized, run k-means as normal

22
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K-means++

23

Given: Data set ! '
'=1,…,8, # clusters 9

Initialize:

: 1 ← Random ! 1:8

For A = 2, … , 9:
Select new cluster:

: ? ← Random ! 1:8 , C 1:8

where probabilities C ' given by

C ' ∝ min
?′<?

: ?′ − ! '
2
2
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How to select k?

There’s no “right” way to select k (number of clusters): larger k virtually 
always will have lower loss than smaller k, even on a hold out set

Instead, it’s common to look at the loss function as a function of 
increasing k, and stop when things look “good” (lots of other heuristics, 
but they don’t convincingly outperform this)

24
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Example on real data

MNIST digit classification data set (used in question for 688 HW4)

60,000 images of digits, each 28x28

25
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K-means run on MNIST

Means for k-means run with k=50 on MNIST data

26



DIMENSIONALITY 
REDUCTION

70Thanks to: Zico Kolter



PRINCIPAL COMPONENT 
ANALYSIS (PCA)
So you’ve measured lots of features …

• Overfitting, interpretability issues, visualization, computation

Principal component analysis (PCA) does this by preserving 
the axis of major variation in the data:

71

Can we combine raw features into new features that 
yield a simpler description of the same system?

Images: Zico Kolter



PRINCIPAL COMPONENT 
ANALYSIS (PCA)
Assume: data is normalized      ??????????
• Zero mean, unit (= 1) variance

Hypothesis function:

• First multiply input by low rank matrix W (“compress” it), then 
map back into the initial space using U

Loss function: squared distance (like k-means)

Optimization problem:

72



PRINCIPAL COMPONENT 
ANALYSIS (PCA)
Dimensionality reduction: main use of PCA for data science 
applications
If                                 , then                      is a reduced (probably 
with some loss) representation of input features x

73



PRINCIPAL COMPONENT 
ANALYSIS (PCA)

PCA optimization problem is non-convex      ???????????
We can solve the problem exactly using the singular value 
decomposition (SVD):
• Factorize matrix M = U Σ VT (also used to approximate)

74

m x n ≈

UM Σ VT

m x r

r x nr x r

CMSC422
MATH240



PRINCIPAL COMPONENT 
ANALYSIS (PCA)
Solving PCA exactly using the SVD:
1. Normalize input data, pick #components k

2. Compute (exact) SVD of X = U Σ VT

3. Return:
• U = V:,1:k Σ-1

1:k,1:k

• W = VT
:,1:k

Loss is 

75

nX

i=k+1

⌃2
ii

CMSC422
MATH240



PCA IN PYTHON
Can roll your own PCA easily (assuming a call to SVD via 
SciPy or similar) …
… or just use Scikit-Learn:

76

from sklearn.decomposition import PCA

X=np.array([[-1,-1],[-2,-1],[-3,-2],[1,1],[2,1],[3,2]])

# Fit PCA with 2 components (i.e., two final features)
pca = PCA(n_components=2)
pca.fit(X)
print(pca.explained_variance_ratio_) 

[ 0.99244... 0.00755...]

Looks like our data basically sit on a line 



HOW TO USE PCA & FRIENDS 
IN PRACTICE
Unsupervised learning methods are useful for EDA
• Cluster or reduce to a few dimensions and visualize!

Also useful as data prep before supervised learning!
1. Run PCA, get W matrix
2. Transform                               – (reduce colinearity, dimension)

3. Train and test your favorite supervised classifier

Or use k-means to set up radial basis functions (RBFs):
1. Get k centers 

2. Create RBF features

77



RECOMMENDER SYSTEMS & 
COLLABORATIVE FILTERING 78



NETFLIX PRIZE
Recommender systems: predict a user’s rating of an item

Netflix Prize: $1MM to the first team that beats our in-house 
engine by 10%
• Happened after about three years
• Model was never used by Netflix for a variety of reasons

• Out of date (DVDs vs streaming)
• Too complicated / not interpretable

79

Twilight Wall-E Twilight II TFotF
User 1 +1 -1 +1 ?
User 2 +1 -1 ? ?
User 3 -1 +1 -1 +1



RECOMMENDER 
SYSTEMS
Recommender systems feel like:
• Supervised learning (we know the user watched some movies, 

so these are like labels)

• Unsupervised learning (we want to find latent structure, e.g., 
genres of movies)

They fall somewhere in between, in “Information Filtering” or 
Information Retrieval” …
• … but we can still just phrase the problem in terms of 

hypothesis classes, loss functions, and optimization problems

80



PREDICTION
Pure user information:
• Age
• Location
• Profession/Salary
Pure item information:
• Movie budget
• Main actors
• Is it a Netflix release?
User-item information:
• Which items are most similar to those I’ve watched before?
• Which users are most similar to me, and what did they watch?

81



COLLABORATIVE 
FILTERING
Collaborative filtering (CF): recommender systems that 
predict based only on the expressed preferences of other 
users for an item

82

i1 i2 i3 i4

u1 1 3

u2 2 5

u3 3 5

u4 4 4

X = 
Rows are users

Cols are items



MATRIX VIEW
Goal: “fill in” the matrix

The matrix is sparse, but the empty cells are not (necessarily) 
zero!

83

i1 i2 i3 i4

u1 1 ? ? 3

u2 ? 2 5 ?

u3 ? 3 ? 5

u4 4 ? 4 ?



APPROACHES TO CF
User-user:
• Find users who look like me – based on items that we’ve both 

rated

• Predict scores for my unrated items as average of those users

Item-item:
• Find similar items (based on scores from all users who have 

rated), predict scores for other users based off this
Matrix factorization:
• Find a low-rank decomposition of X that agrees (exactly, 

approximately) at the observed values

84



APPROACH #1: ITEM-BASED CF 
EX: INFER (USER 1, ITEM 3)

Item 1 Item 2 Item 3 Item 4 Item 5

User 1 8 1 ? 2 7

User 2 2 ? 5 7 5

User 3 5 4 7 4 7

User 4 7 1 7 3 8

User 5 1 7 4 6 ?
User 6 8 3 8 3 7

Example due to Qiang Yang [HKUST] 85



HOW TO CALCULATE 
SIMILARITY (ITEMS 3 AND 5)?

Item 1 Item 2 Item 3 Item 4 Item 5

User 1 8 1 ? 2 7

User 2 2 ? 5 7 5

User 3 5 4 7 4 7

User 4 7 1 7 3 8

User 5 1 7 4 6 ?
User 6 8 3 8 3 7

86Example due to Qiang Yang [HKUST]



SIMILARITY BETWEEN ITEMS
Item 3 Item 4 Item 5

? 2 7

5 7 5

7 4 7

7 3 8

4 6 ?
8 3 7

How should we 
calculate the similarity 
between two items 
(e.g., items 3 and 5)?

We’ve done this before 
in a different context!

87



SIMILARITY BETWEEN ITEMS
Item 3 Item 5

? 7

5 5

7 7

7 8

4 ?
8 7

Only consider users (i.e., rows) who have
rated both items (i.e., non-empty)
One approach: For each user:

Calculate difference in ratings for the
two items
Take the average of this difference
over the users

Another approach: cosine similarity!

Can also use Pearson Correlation
Coefficients (also in user-user approach) 

sim(item 3, item 5)  = cosine( (5, 7, 7, 8), (5, 7, 8, 7) )

= (5*5 + 7*7 + 7*8 + 8*7)/(sqrt(52+72+72+82)* sqrt(52+72+82+72))

88



PREDICTION: CALCULATING 
RANKING R(USER1,ITEM3)

Item 
3

2

1
8

7
Item 

5

Item 
4

Item 
2

Item 
1 )},(),(

),(),(
),(),(
),(),({*),(

3551

3441

3221

311131

itemitemsimitemuserr
itemitemsimitemuserr
itemitemsimitemuserr
itemitemsimitemuserritemuserr

+
+
+
=a

Where a is a normalization factor, which is
1/[the sum of all sim(itemi,item3)].

89



APPROACH #2: CF VIA MATRIX 
FACTORIZATION
Want: all entries i, j of ratings matrix
Idea: approximate as  
• User-specific weights
• Item-specific weights
Hypothesis function:       ???????????

Loss function: least squares on observed entries

Optimization problem:      (S is observed entries)

90



OPTIMIZATION FOR CF
Matrix factorization is non-convex; we won’t go for perfect
Consider the objective w.r.t. a single term ui: 

Just a least squares problem!  Analytic solution (from earlier):

Idea (not optimal): repeatedly solve for all ui, vj until converged 
or bored

91



WHAT ARE WE DOING?
Factorizing the ratings matrix X as

with

But we are only penalizing mismatches between UV and X at 
the observed entries in X

92



ISN’T THIS JUST PCA?
PCA also performs a factorization
• Or more precisely

In PCA, all entries are observed (or imputed beforehand)

Simplifies the solution to PCA (which we can solve exactly 
via the SVD) versus CF via matrix factorization (which we 
cannot) 

93

XT = UV = U(Wx)



(SOME MORE)
RECOMMENDER SYSTEMS (ISH) 94



ASSOCIATION RULES
Last time: CF systems give predictions based on other users’ 
scores of the same item
Complementary idea: Find rules that associate the presence 
of one set of items with that of another set of items

95



FORMAT OF 
ASSOCIATION RULES
Typical Rule form: 
• Body à Head 
• Body and Head can be represented as sets of items (in transaction data) 

or as conjunction of predicates (in relational data)
• Support and Confidence

• Usually reported along with the rules
• Metrics that indicate the strength of the item associations

Examples:
• {diaper, milk} à {beer} [support: 0.5%, confidence: 78%]
• buys(x, "bread") /\ buys(x, “eggs") à buys(x, "milk") [sup: 0.6%, conf: 65%]
• major(x, "CS") /\ takes(x, "DB") à grade(x, "A") [1%, 75%]
• age(x,30-45) /\ income(x, 50K-75K) à owns(x, SUV)
• age=“30-45”, income=“50K-75K” à car=“SUV”

Thanks to: Bamshad Mobasher 96



ASSOCIATION RULES: 
BASIC CONCEPTS
Let D be database of transactions

Let I be the set of items that appear in the database:
• e.g., I = {A, B, C, D, E, F}
Each transaction t is a subset of I
A rule is an implication among itemsets X and Y, of the form by X 
à Y, where X Ì I, Y Ì I, and X Ç Y= Æ

• e.g.: {B,C} à {A}
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Transaction ID Items
1000 A, B, C

2000 A, B

3000 A, D

4000 B, E, F

Thanks to: Bamshad Mobasher



TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  
4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  
 

Customer
buys 
diaper

Customer
buys both

Customer
buys beer

ASSOCIATION RULES: 
BASIC CONCEPTS
Itemset
• A set of one or more items

• E.g.: {Milk, Bread, Diaper}
• k-itemset

• An itemset that contains k items
Support count (s)
• Frequency of occurrence of an itemset (number of 

transactions in which it appears)

• E.g.   s({Milk, Bread,Diaper}) = 2 

Support
• Fraction of the transactions in which an itemset appears

• E.g.   s({Milk, Bread, Diaper}) = 2/5

Frequent Itemset
• An itemset whose support is greater than or equal to a 

minsup threshold
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Example:

Beer}Diaper,Milk{ ®

4.0
5
2

|D|
)BeerDiaper,,Milk(

===
ss

67.0
3
2

)Diaper,Milk(
)BeerDiaper,Milk,(

===
s

sc

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  
4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  
 

ASSOCIATION RULES: 
BASIC CONCEPTS
Association Rule
• X à Y, where X and Y are non-

overlapping itemsets
• {Milk, Diaper} à {Beer} 

Rule Evaluation Metrics
• Support (s)

• Fraction of transactions that 
contain both X and Y

• i.e., support of the itemset XÈ Y
• Confidence (c)

• Measures how often items in Y
appear in transactions that
contain X
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Another interpretation of support and confidence for X à Y

– Support is the probability that a transaction contains {X È
Y} or Pr(X /\ Y)

– Confidence is the conditional probability that a 
transaction will contains Y given that it contains X or  Pr(Y 
| X)

confidence(X à Y)  =  s(X È Y) / s(X)
=  support(X È Y) / support(X)

support(X à Y) = support(X È Y)  = s(X È Y) / |D|

ASSOCIATION RULES: 
INTERESTINGNESS
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ASSOCIATION RULES:
INTERESTINGNESS
Other considerations of how interesting a rule is:

If lift is equal to 1       ??????????
• Body X and Head Y are independent
If lift is greater than 1      ?????????
• Body X and Head Y are in some sense dependent

Conviction measures frequency of X and Y occurring 
together, vs. how frequently X occurs but not Y
Many others …
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ASSOCIATION RULES 
IN PRACTICE
Orange3 is a {GUI, Python API, …} that:
• Enumerates frequent itemsets

• Performs association rule mining

• (Wrapper calls to, shared functionality with, Scikit-Learn)
conda install –c ales-erjavec orange3

More information: 
https://blog.biolab.si/2016/04/25/association-rules-in-orange/
In general:
• Can be useful for interpretable, fast data mining
• Typically doesn’t consider order, scalability issues …
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