INTRODUCTION TO
DATA SCIENCE

JOHN P DICKERSON

Lecture #17 — 10/26/2021

CMSC320

Tuesdays & Thursdays
5:00pm — 6:15pm COMPUTER SCIENCE
g P UNIVERSITY OF MARYLAND

https://cmsc320.github.io/

THE DATA LIFECYCLE

Exploratory Analysis,
Data Data =REWAIE hypothesis
collection processing & testing, &
Data viz ML

Insight &
Policy
Decision

TODAY’S LECTURE

Introduction to machine learning

« How did we actually come up with that linear model from last class?

« Basic setup and terminology; linear regression & classification

Thanks to: Zico Kolter (CMU), David Kauchak (Pomona), Nick Mattei (Tulane)

First GIS result for “machine learning”

RECALL: EXPLICIT EXAMPLE
FROM THE NLP LECTURES

Score Y of an instance x and class y is the sum of the weights for the features in
that class:

Yy F26,f(Xy) r

>
=0 1(x.) 1 | like %
Let's compute YPyq -pates cats --- 0 | hate |8
* 1I)x1,y=h<';vtes_cats = eT f(X1, y= hates_cats = O) 1 | cats 2)
= 0*1 +-1*1 + 1%0 + -0.1*1 + 0*0 + 1*0 + -1*0 + 0.5*0 + 1*1 0|l =
=1-01+1=-0.1 0 |like |&
0 | hate §
0 | cats ?
- |2

6T={0 |1 [1 |-01]0 [1 |1 |05 |1 ° f(x4, y = 0)

RECALL: EXPLICIT EXAMPLE
FROM THE NLP LECTURES

Saving the boring stuff:

¢x1,y=hates_cats =-0.1; ¢x1,y=likes_cats =+2.5 Document 1: 1 like cats

¢X2,y=hates_cats =+1 -9; ¢x2,y=likes_cats =+0.5

We want to predict the class of each document:

y = argmax 07f(x,y)
J

Document 2: | hate cats

MACHINE LEARNING

We used a linear model to classify input documents
The model parameters 6 were given to us a priori

* (John created them by hand.)

« Typically, we cannot specify a model by hand.

Supervised machine learning provides a way to automatically infer the predictive
model from labeled data.

Training Data ML Algorithm Predictions
(x(M), yM)
(x(2), y(2)) Hypothesis function » New example x

(x®), y©3) y® = h(x®) y = h(x)

MACHINE LEARNING

Arthur Samuel 1959, “... give[s] computers the ability to learn
without being explicitly programmed.”

Tom M. Mitchell, “A computer program is said to learn

from experience E with respect to some class of tasks T and
performance measure P if its performance at tasks in T as
measured by P, improves with experience E.”

Major Machine Learning Paradigms:
- Supervised Learning: provide labeled examples _@éﬁ

I ehelet Training set
1 observations

Machine learner

machine learns to identify these (classification).

* Unsupervised Learning: unlabeled examples —
machine learns to differentiate these (clustering).

- Reinforcement Learning: provide reward signal — Nemsmmmnnnon e /
given as feedback to the machine (RL).

Test set

|1

Prediction

1
stats 1
model

[NM]

[NM]

Multiclass Classification

LEARNING: TYPES OF | 2./
AT A A/ 9w
FEEDBACK | s
., A m=
Supervised Learning. . ® Oo . ® \ 8

* Learn a function from examples of its inputs and outputs. >

* E.g., An agent is presented with many camera images and is told to learn which ones contain
busses.

« Agent learns to map from images to Boolean output 0/1 of bus not present/present.
» Learning decision trees is a form of supervised learning.

Unsupervised Learning.

* Learn patterns in the input with no output values supplied.
« E.g,: Identify communities on the Internet.

Reinforcement Learning.

 Learn from reinforcement (occasional rewards).
* E.g., An agent learns how to play backgammon or go or chess against itself.

TERMINOLOGY

Input features: () € R"*+:=1,....m

~»

xTr=11 1 0 1
xT=11 0 1 1

Outputs: y@) e y,i = 17 cee s Y
y® € {0, 1} = { hates_cats, likes_cats }

Model parameters: 0 € R" 6T=0 |1 |1 |-01]0 |1 |-1 |05 |1

TERMINOLOGY

Hypothesis function: h9: R"™ — y

E.g., linear classifiers predict outputs using:

fip(m) = 0F 3= ZH T

Loss function: /: yxy = R+

» Measures difference between a prediction and the true output
 E.g., squared loss: E(fj, y) = (g’] — y)2

- E.g., hinge loss: g(y) — maX(O, 1—1- Z/)
S T

Output t = {-1,+1} based Classifier score y
on -1 or +1 class label

THE CANONICAL MACHINE
LEARNING PROBLEM

At the end of the day, we want to learn a hypothesis function that predicts the
actual outputs well.

And over all your

o training data*
Choose the parameterization /

that minimizes loss!

\ m . .
minimize, Z {(hg(z®),y™)
i=1

\

Given an hypothesis
function and loss function

F

*Not actually what we want — want it over the world of inputs — will discuss later ...

HOW DO | MACHINE LEARN?

1. What is the hypothesis function?

- Domain knowledge and EDA can help here.
2. What is the loss function?

« We've discussed two already: squared and absolute.
3. How do we solve the optimization problem?

- (We'll cover gradient descent and stochastic gradient descent in class, but if you
are interested, take CMSC422!)

timize

First GIS result for “optimization”

ASIDE: LOSS FUNCTIONS

QUICK ASIDE ABOUT LOSS
FUNCTIONS

Say we’re back to classifying documents into:

* hates_cats, translated to label y = -1

« likes_cats, translated to label y = +1

We want some parameter vector 6 such that:

* P, > 0if the feature vector x is of class likes_cat; (y = +1)

* P, <0ifx'slabelisy =-1

We want a hyperplane that separates positive examples from negative examples.

Why not use 0/1 loss; that is, the number of wrong answers?

arg mmz { 0,2V < O}

MINIMIZING 0/1 LOSS IN A
SINGLE DIMENSION

Zn: 1 [yu‘) (6,2 < o]
1=1

loss

6

Each time we change 6 such that the example is right
(wrong) the loss will increase (decrease)

MINIMIZING 0/1 LOSS OVER
ALL O

This is NP-hard.
arg min ZE : y (0, x\") <0

Small changes in any 6 can have large changes in the loss (the change isn’t
continuous)

 There can be many local minima

« At any give point, we don’t have much information to direct us towards any minima

Maybe we should consider other loss functions.

DESIRABLE PROPERTIES

loss

0

Continuous so we get a local indication of the direction of minimization

Only one (i.e., global) minimum

CONVEX FUNCTIONS

“A function is convex if the line segment between any two points on its graph lies
above it.”

Formally, given function fand two points x, y:
fAx+ (1 =Ay) < Af(x)+ 1= A)f(y) YAe[0,1]

S(tey +(1 = t)xs)

SURROGATE LOSS
FUNCTIONS

For many applications, we really would like to minimize the 0/1 loss

A surrogate loss function is a loss function that is a proxy for the actual loss
function (in this case, 0/1) and is hopefully consistent with the 0/1 loss — that is,
minimizing the surrogate loss also minimizes the 0/1 loss

We'd like to identify convex surrogate loss functions to make them easier to
minimize

Key to a loss function is how it scores the difference between the actual label y
and the predicted label y’

SURROGATE LOSS
FUNCTIONS

0/1 loss: f(g, y) =1 [yg S O]

Want: a function that is continuous and convex and is consistent with the 0/1 loss
— that is, minimizing the surrogate loss also minimizes the 0/1 loss

Hinge: ((9,y) = max(0, 1 — yg)
Exponential: f(yfj y) — e_y?)

Squared: 5(@, y) — (y _ @)2

SURROGATE LOSS
FUNCTIONS

0/1 loss:

Hinge:
Exponential:

Squared loss:

' (Recall: y in {-1, +1})N

SOME ML ALGORITHMS

Hypothesis

Function

Loss Function

Optimization
Approach

criterion (~Hinge)

Least squares Linear Squared Analytical or GD
Linear regression Linear Squared Analytical or GD
Support Vector Linear, Kernel Hinge Analytical or GD
Machine (SVM)

Perceptron Linear Perceptron Perceptron

algorithm, others

Neural Networks Composed

Squared, Hinge,

SGD

nonlinear Cross Ent, ...

Decision Trees Hierarchical Many Greedy
halfplanes

Naive Bayes Linear Joint probability #SAT

Follow the white rabbit:

https://en.wikipedia.org/wiki/List_of_machine_learning_concepts

RECALL: LINEAR REGRESSION

Scatterplot of Listing vs IncomePC

900000 - o
800000 -
700000 - e
600000 -

500000 -

Listing

400000

300000

200000 - “e °,
L (]

100000 1 T T T T T T T T
15000 17500 20000 22500 25000 27500 30000 32500
IncomePC

LINEAR REGRESSION AS
MACHINE LEARNING

Let’s consider linear regression that minimizes the sum of squared error, i.e., least
squares ...

1. Hypothesis function: ?7?????7??

Linear hypothesis function he (LE) =01

2. Loss function: ??????7??

Squared error loss 1) = %(:& 2 y)2

3. Optimization problem: ?7?7?7?7??7??

minimize, » (672 —y@)2
1=1

LINEAR REGRESSION AS
MACHINE LEARNING

Rewrite inputs: Each row is a feature vector paired
with a label for a single input

m labeled inputs
i (x<1))T;/ \:ym § 1 p

2)\T
x = | @) ER™M y= y'? | crm

n features

Rewrite optimization problem:

1
minimize, 3 | X6 — |3

*Recall: |zl|5 =2"2=3" 27

GRADIENTS

In Lecture 10, we showed that the mean is the point that minimizes the residual
sum of squares:

« Solved minimization by finding point where derivative is zero
* (Convex functions like RSS - single global minimum.)
The gradient is the multivariate generalization of a derivative.

For a function f: R" — R, the gradient is a vector of all n partial derivatives:

01 (6)7
00,
Vof(0) = : c R"
of (0)
00

n—

GRADIENTS

-
~

A EREERERN

AR RSN

e E k2N

- s e . X ¥ ¥

; NN Y r s
XKL,

-1.5 -1 -0.5 0 05 1 175 2
Gradient of f(x,y) = xe~*2 * y2)

28

GRADIENTS

Minimizing a multivariate function involves finding a point where the gradient is
zero:
Vof(0) =0 (the vector of zeros)

Points where the gradient is zero are local minima
» If the function is convex, also a global minimum
Let’s solve the least squares problem!

We’ll use the multivariate generalizations of
some concepts from MATH141/142 ...

« Chain rule: ng(XH) — XTVXQf(XH)

« Gradient of squared £ norm: VQHH — ZH% = 2(9 — Z)

LEAST SQUARES

Recall the least squares optimization problem:

1
minimize, 2 | X0 — y||3

1 - .
9 Chain rule:
Vo 9 HX9 — ?J||2 — V,f(X0) = XTV 4, f(X0)
1 Gradient of :
a1 2 radient or norm:
X7V x5 X0 —yl2 = Vol 2% = 2(6 2)

|
Vo3| X6—yl3 = X"(X0—y)

LEAST SQUARES

Recall: points where the gradient equals zero are minima.

1
Vo5 |1X0 -yl = X" (X0 —y)
X1 (X0 —y) =0 oo s
XT'X0-—XTy=0m X' X0=X"y
(XTX)"'XTX0=(XTX)" 1 X1y
[9 — (XTX)—ley]

ML IN PYTHON O learn

machine learning in Python

Python has tons of hooks into a variety of machine learning libraries. (Part of why
this course is taught in Python!)

Scikit-learn is the most well-known (non-deep-learning) library:

Classification (SVN, K-NN, Random Forests, ...)

Regression (SVR, Ridge, Lasso, ...)

Clustering (k-Means, spectral, mean-shift, ...)

Dimensionality reduction (PCA, matrix factorization, ...)

Model selection (grid search, cross validation, ...)

Preprocessing (cleaning, EDA, ...)

Neural nets and some deep learning, but not the right library for this

Built on the NumPy stack; plays well with Matplotlib.

LEAST SQUARES IN PYTHON

T —1 ~T
You don’t need Scikit-learn for OLS ... [9 = (X"X)7'X y]

params = np.linalg.solve(X.T.dot(X), X.T.dot(y))

But let’s say you did want to use it.

from sklearn import linear model

X=1[0,0], [1,1], [2,2]]
Yy =100, 1, 2]

= linear model.LinearRegression()
fit(X, Y)
.coef

array([0.5, 0.5])

NEXT UP:

(STOCHASTIC)
GRADIENT DESCENT

GRADIENT DESCENT

We used the gradient as a condition for optimality

It also gives the local direction of steepest increase for a function:

A

'~~--f.,Vef(9)

9]_ If there is no increase,
3 gradient is zero = local
minimum!

>
02

Intuitive idea: take small steps against the gradient.

Image from Zico Kolter

GRADIENT DESCENT

Algorithm for any* hypothesis function hgt R™ — yf, loss function £: yX y — R+
, step size (v:

Initialize the parameter vector:

- 00

Repeat until satisfied (e.g., exact or approximate convergence):
- Compute gradient: g <— 21711 ng(he (33(7’)), y(z))

- Update parameters: 0 ¢

—0—a-g

*must be reasonably well behaved

GRADIENT DESCENT

Step-size (\alpha) is an important parameter

* Too large - might oscillate around the minima
- Too small - can take a long time to converge

If there are no local minima, then the algorithm eventually converges to the
optimal solution

Very widely used in Machine Learning

EXAMPLE

Function: f(x,y) = x2 + 2y? N

Viz,y) = [i?j]

Let’s take a gradient step from (-2, +1/2):

vit-21) =",] c,u

Step in the direction (+4, -2), scaled by step size o -'f_{}:ff{{{?_i?i_;;:f{{{i_:_:::;-_'-_'{;_.:;;;;_-i‘::;_--_

Repeat until no movement

[ZK]

A simple example: predicting electricity use

What will peak power consumption be in Pittsburgh tomorrow?
Difficult to build an “a priori” model from first principles to answer this question

But, relatively easy to record past days of consumption, plus additional features
that affect consumption (i.e., weather)

High Temperature (F) | Peak Demand (GW)

2011-06-01 84.0 2.651
2011-06-02 73.0 2.081
2011-06-03 75.2 1.844
2011-06-04 84.9 1.959

Plot of consumption vs. temperature

Plot of high temperature vs. peak demand for summer months (June — August) for
past six years

3.00 -

)
NN
or N
S o
1 1

Peak Demand (GW
N
DO
()}

2.00 -
1.75 - X
X X
1.50 1
60 70 80 90

High Temperature (F
[ZK] g P () 6

Hypothesis: linear model

Let’s suppose that the peak demand approximately fits a linear model
Peak_Demand ~ 6, - High_Temperature + 0,
Here 0, is the “slope” of the line, and 6, is the intercept

How do we find a “good” fit to the data?

Many possibilities, but natural objective is to minimize some difference between this line
and the observed data, e.g. squared loss

E(0) = Z (51 -High_Temperature@) +0, — Peak_Demand<i>)2

redays

[ZK]

How do we find parameters?

How do we find the parameters 6, 6, that minimize the function

E0) = Z (0, . High_Temperature'” + 60, — Peak_Demand@)Q

redays

=) (0,246, —y)?

redays

General idea: suppose we want toAminimize some function f(6)

f(0)

Derivative is slope of the function, so negative derivative points “downhill”
[ZK]

Computing the derivatives

What are the derivatives of the error function with respect to each parameter 6, and 0,7

8E
0 9 Edz (0; -2V + 0y —y¥))?
redays
= Zi(e 2@ 40, — y9)?
zedaysael
. 0
=) 2(0, -2+ 60, —y) . —0, - 2®
00,
1edays
= Z 200, - 2V + 0, —y¥)) . 2
1edays
OEb) _ > 2(6, -2l 46, —y)
892 redays

[ZK]

Finding the best ¢

To find a good value of 8, we can repeatedly take steps in the direction of the
negative derivatives for each value

Repeat:
0,:=0, —« Z 2(6; - 29 4+ 0y —y)) . 20
redays
Oy =0, —a > 2(0, -2 +6, —yV)
redays

where « Is some small positive number called the step size

This is the gradient decent algorithm, the workhorse of modern machine learning
[ZK] 10

[ZK]

Gradient descent

3.00

)

DO

3

ot
1

Do

O

-
]

2.25

2.00 -

Peak Demand (GW

1.75 -

1.50 -

High Temperature (F)

11

[ZK]

Gradient descent

3.00 -+

o

ot

-
]

2.25

2.00 A

Peak Demand (GW

1.75 - X

1.50 A

Normalized Temperature

Normalize input by subtracting the mean anad
dividing by the standard deviation

12

[ZK]

Gradient descent — Iteration 1

—

Peak Demand (GW

3.001 X Observed days ¢ XX)%

——— Squared loss fit L X
2.75 1

X X

2.50 A
2.25 1
2.00 A
1.75 A

X X
1.50 A

—4 —2 0 2

Normalized Temperature
6 = (0.00,0.00)

E(0) = 1427.53

(9E(0) 2E®)) _ (_151.20,~1243.10)

13

[ZK]

Gradient descent — Iteration 2

3.001 X Observed days XX)%
——— Squared loss fit ¥ X
= X X
< 2,50 -
O
&
g 2.25 -
()
o . If’ -
a x MR SRGENCN
1.75 1 X WP
X X y&
1.50 - 3
—4 —2 0 2
Normalized Temperature
6 = (0.15,1.24)
E(0) = 292.18
OE(0) OE(0)y
(2810) 0BO)y — (_67.74, —556.91) .

[ZK]

Gradient descent - Iteration 3

3.001 X Observed days ¢ XX)%
—— Squared loss fit o
S
— 2.50 A
O
o
g 2.25 -
()
Q
_:‘3 2.00 A
o
1.75 1 X
X X
1.50 -
—4 —2 0 2
Normalized Temperature
6 = (0.22,1.80)
E(0) = 64.31
(2L(0) OB(0)) _ (_30.35, —249.50) .

[ZK]

Gradient descent — Iteration 4

3.001 X Observed days ¢ XX)%
—— Squared loss fit o
S
— 2.50 A
O
o
g 2.25 -
()
Q
_:‘3 2.00 A
o
1.75 1 X
X X
1.50 -
—4 —2 0 2
Normalized Temperature
0 = (0.25,2.05)
E(6) = 18.58
(9L(0) DE®)) _ (_13.60,—111.77) .

[ZK]

Gradient descent — Iteration 5

3.001 X Observed days ¢ XX)%
—— Squared loss fit o
5
— 2.50 A
O
o
g 2.25 -
()
Q
_:‘3 2.00 A
o
1.75 1 X
X X
1.50 -
—4 —2 0 2
Normalized Temperature
6 = (0.26,2.16)
E(6) = 9.40
(859(19)7 850(29)) = (—6.09, —50.07) -

[ZK]

Gradient descent - lteration 10

3.001 X Observed days
—— Squared loss fit
S
— 2.50 A
O
o
£ 2.25 A
()
Q
_:‘3 2.00 A
o
1.75 - X
X X
1.50 -
—4 —2 0 2
Normalized Temperature
6 = (0.27,2.25)
E(6) =17.09
OE(0) OE(0)y _
(59, 90,) = (—0.11,—-0.90) .

Fitted line in “original” coordinates

3.004 X Observed days
—— Squared loss fit
3
— 2.50 A
O
&
g 2.25 1
()
()
—;4(3 2.00 A
o
1.75 - X
X X
1.50 -
50 60 70 80 90 100

High Temperature (F)

[ZK]

[ZK]

Making predictions

Importantly, our model also lets us make predictions about new days

What will the peak demand be tomorrow??

If we know the high temperature will be 72 degrees (ignoring for now that this is

also a prediction), then we can predict peak demand to be:
Predicted_demand =6, - 72 + 0, = 1.821 GW

(requires that we rescale 6 after solving to “normal” coordinates)

Equivalent to just “finding the point on the line”

20

IN GENERAL: GRADIENT
DESCENT FOR OLS

Algorithm for linear hypothesis function and squared error loss function
(combined to 1/2||.X 6 — y||5, like before):

Initialize the parameter vector:

00

Repeat until satisfied:
J i
Compute gradient: g < X (XH — y)
Update parameters: 0 < 0 — o - g

GRADIENT DESCENT IN
PURE(-ISH) PYTHON

def grad descent(X, y, T, alpha):
m, n = X.shape
theta = np.zeros(n)
f = np.zeros(T)

for i in range(T):

f[i] = 0.5*np.linalg.norm(X.dot(theta) — y)**2

g = X.T.dot(X.dot(theta) — y)

theta = theta — alpha*g
return theta, £

Implicitly using squared loss and linear hypothesis function above; drop in your
favorite gradient for kicks!

PLOTTING LOSS OVER TIME

1600
1400
1200
1000

800 -

Objective

600 -

400 -

200 -

0 5 10 15 20
Iteration Number

N
Image from Zico Kolter

ITERATIVE VS ANALYTIC
SOLUTIONS

But we already had an analytic solution! What gives?

Recall: last class we discuss 0/1 loss, and using convex surrogate loss functions
for tractability

One such function, the absolute error loss function, leads to:

™m
minimize, Z|9T:c(i) — y'"| = minimize, | X0 —y|,
i=1

L0

* Not differentiable! But subgradients?

* No closed form!

« So you must use iterative method [; ;

LEAST ABSOLUTE
DEVIATIONS
Can solve this using gradient descent and the gradient:

Vo 1X0 —yl; = X" sign(X6 — y)

Simple to change in our Python code:

for i in range(T):

f[i] = np.linalg.norm(X.dot(theta) — y, 1)

g = X.T.dot(np.sign(X.dot(theta) — y))

theta = theta — alpha*g
return theta, £

BATCH VS STOCHASTIC
GRADIENT DESCENT

Batch: Compute a single gradient (vector) for the entire dataset (as we did so far)

Repeat until convergence {

0;:=0; +ad> ", (YW — he(z?)) x? (for every j).

IncrementallStocha%tic:

* Do one training sample at a time, i.e., update parameters for every sample
separately
* Much faster in general, with more pathological cases

Loop {

for i=1 to m, {
0; :=0; + o (y© — hy(z)) xy) (for every 7).

}

From: Andrew Ng, CS229 Lecture Notes

