INTRODUCTION TO
DATA SCIENCE

JOHN P DICKERSON

Lecture #8 — 09/23/2021

CMSC320

Tuesdays & Thursdays
COMPUTER SCIENCE

: - 6:1

5:00pm — 6:15pm UNIVERSITY OF MARYLAND

https://cmsc320.github.io/

THE DATA LIFECYCLE

Exploratory Analysis,
DEIF! Data analysis hypothesis
collection processing & testing, &
Data viz ML

Insight &
Policy
Decision

7
S —=

Version control for tracking code/data and
for managing collaboration.

TODAY’S LECTURE

By popular request ...
* Version control primer!
« Specifically, git via GitHub and GitLab

 Thanks: Mark Groves (Microsoft), llan Biala & Aaron Perley (CMU), Sharif U., &
the HJCB Senior Design Team!

iinfiniing

58, SE (1st) 12 mini 6, 6S, 7, X, XS, 11 Pro 12,12 Pro XR, 11 XS Max, 11 Pro Max 6 Plus, 6S Plus, 12 Pro Max
8, SE (2nd) 7 Plus, 8 Plus

WHAT IS VERSION CONTROL?

oject_actual ly_final
'olect_Fina1
‘olect_handin

"oject_old_idea
"oject_superfrogger
"oject_temp
"oject_this_one_works
"0ject_vl

mproject_v10
mproject_vll
mproject_v1Z
mproject_vl13
mproject_v14
mproject_v15
mproject_v16
mproject_vZ

DEVELOPMENT TOOL

When working with a team, the need for a central repository is essential
* Need a system to allow versioning, and a way to acquire the latest edition of the code

« A system to track and manage bugs was also needed

GOALS OF VERSION CONTROL

Be able to search through revision history and retrieve previous versions of any
file in a project

Be able to share changes with collaborators on a project

Be able to confidently make large changes to existing files

O+O+1+0—C
S\

atlassian.com/git/tutorials/what-is-version-control

NAMED FOLDERS APPROACH

Can be hard to track CUITCITRED 158, 90CK P
Untitled 241.doc
Memory-intensive Untitled 138 copy-docx
Untitled 138 copy 2. docx
Can be slow Untitled 139.docx
Untitled 40 MOM ADDRESS,jpg
Hard to share Untitled 242.doc
Untitled 243.doc
No record of authorship Untitled 243 IMPORTANT. doc
{ pme
Y oumyen

/

PROTIP: NEVER LOOK IN SOMEONE-
ELSE’S DOCIMENTS FOLDER.

LOCAL DATABASE OF
VERSIONS APPROACH

iaad_g!

Project
Files

Old Versions

Provides an abstraction over finding the right versions of files and replacing them
in the project

Records who changes what, but hard to parse that

Can’t share with collaborators

CENTRALIZED VERSION
CONTROL SYSTEMS

A central, trusted repository determines
the order of commits (“versions” of the
project)

Collaborators “push” changes (commits)
to this repository.

Any new commits must be compatible e
with the most recent commiit. If it isn’t, o=

somebody must “merge” it in.

Examples: SVN, CVS, Perforce

_.
.
-
—“'
.
) Iz
[-
[] [B

DISTRIBUTED VERSION
CONTROL SYSTEMS (DVCS)

No central repository
Every repository has every commit

Examples: Git, Mercurial

Developer
A’s local
files

Developer
B’s local
files

Push/Fetch

Commit

Commit

Checkout Checkout

Commit
Dev 1"
C’s
Repo

Push/Fetch

Central Commit
Repository
Commit Dev
Checkout Checkout Push/Fetch D’s
Developer Developer
C’s 10Fc)a1 D’s logal Dev Repo
files files >
B’s Push/Fetch
Repo
Centralized Version Distributed Version
Control System > Commit Control System

WHAT IS GIT

Git is a version control system
Developed as a repository system for both local and remote changes
Allows teammates to work simultaneously on a project

Tracks each commit, allowing for a detailed documentation of the project along
every step

Allows for advanced merging and branching operations

o1t

A SHORT HISTORY OF GIT

Linux kernel development

1991-2002

Changes passed around as archived file
2002-2005

Using a DVCS called BitKeeper

2005

Relationship broke down between two communities
(BitKeeper licensing issues)

A SHORT HISTORY OF GIT

Goals:

Speed

Simple design

Strong support for non-linear development (thousands of parallel branches)
Fully distributed — not a requirement, can be centralized

Able to handle large projects like the Linux kernel efficiently (speed and data size)

A SHORT HISTORY OF GIT

Popularity:
* Gitis now the most widely used source code management tool

« 50% of professional software developers use Git (often through GitHub) as their

primary source co system

[citation needed, IMO much more ©]

Interest over time. Web Search. Worldwide, 2004 - present.

—— Git —— Apache Subversion Mercurial —— Perforce Helix = —— Concurrent Versions System
I/
, ~~\
P i)
N O~ \ W4
AN\ ~A_~ Y s~ \f W/
Prad el T b W o T ~TTN
/'\, v \ /\/\ ~— N\
P Ny - ~~ ———~
N7y @ Bt L DY v
/\ U T - - ’\V -~
\/ f:v,\ e ,/x/ \—~~\
N4 i Y P e Voo \
’\/ w—'\~~ ____ e, 20t i
o~ e Aol oV, -
4 Lpt - u\——‘—/s_\>_-ﬁ’-“> \\\\\\\\\\\
e e A e, ———————— T PE— o e

2005 2007 2009 2011 2013 201

Go g le View full report in Google Trends

GIT IN INDUSTRY

Companies and projects currently using Git
Google

* Android
Facebook
Microsoft
Netflix
Linux
Ruby on Rails
Gnome
KDE
Eclipse

- X.org

GIT BASICS

Snapshots, not changes

« A picture of what all your files look like at that moment
» |If a file has not changed, store a reference

Nearly every operation is local

« Browsing the history of project

« See changes between two versions

WHY GIT IS BETTER

Git tracks the content rather than the files

Branches are lightweight, and merging is a simple process

Allows for a more streamlined offline development process
Repositories are smaller in size and are stored in a single .git directory

Allows for advanced staging operations, and the use of stashing when working
through troublesome sections

GIT VS {CVS, SVN, ...}

Why you should care:

« Many places use legacy systems that will cause problems in the future — be the
change you believe in!

Git is much faster than SVN:
 Coded in C, which allows for a great amount of optimization

« Accomplishes much of the logic client side, thereby reducing time needed for
communication

« Developed to work on the Linux kernel, so that large project manipulation is at the
forefront of the benchmarks

GIT VS {CVS, SVN, ...}

Speed benchmarks:

Commit A Commit B Diff Curr Diff Rec Diff Tags Clone
git svn git svn git swvr git svn git svn git* git svn
Log (50) Log (All) Log (File) Update Blame Size
41 svn .jl svn g}: svn

Benchmarks performed by hitp://git-scm.com/about/small-and-fast

‘Eb%

http://git-scm.com/about/small-and-fast

GIT VS {CVS, SVN, ...}

Git is significantly smaller than SVN
« All files are contained in a small decentralized .git file

* In the case of Mozilla’s projects, a Git repository was 30 times smaller than an
identical SVN repository

« Entire Linux kernel with 5 years of versioning contained in a single 1 GB .qgit file

« SVN carries two complete copies of each file, while Git maintains a simple and
separate 100 bytes of data per file, noting changes and supporting operations

Nice because you can (and do!) store the whole thing locally

GIT VS {CVS, SVN, ...}

Git is more secure than SVN
« All commits are uniquely hashed for both security and indexing purposes
« Commits can be authenticated through numerous means

* In the case of SSH commits, a key may be provided by both the client and server to
guarantee authenticity and prevent against unauthorized access

GIT VS {CVS, SVN, ...}

Git is decentralized:

« Each user contains an individual repository and can check commits against itself,
allowing for detailed local revisioning

« Being decentralized allows for easy replication and deployment

* In this case, SVN relies on a single centralized repository and is unusable without

GIT VS {CVS, SVN, ...}

Git is flexible:

 Due to it's decentralized nature, git commits can be stored locally, or committed
through HTTP, SSH, FTP, or even by Email

» No need for a centralized repository

« Developed as a command line utility, which allows a large amount of features to be
built and customized on top of it

GIT VS {CVS, SVN, ...}

Data assurance: a checksum is performed on both upload and download to
ensure sure that the file hasn’t been corrupted.

Commit IDs are generated upon each commit:
« Linked list style of commits

« Each commit is linked to the next, so that if something in the history was changed,
each following commit will be rebranded to indicate the modification

GIT VS {CVS, SVN, ...}

Branching:
« Git allows the usage of advanced branching mechanisms and procedures

* Individual divisions of the code can be separated and developed separately within
separate branches of the code

« Branches can allow for the separation of work between developers, or even for
disposable experimentation

« Branching is a precursor and a component of the merging process

Will give an example shortly.

GIT VS {CVS, SVN, ...}

Merging
« The process of merging is directly related to the process of branching

» Individual branches may be merged together, solving code conflicts, back into the
default or master branch of the project

« Merges are usually done automatically, unless a conflict is presented, in which case
the user is presented with several options with which to handle the conflict

Will give an example shortly.

GIT VS {CVS, SVN, ...}

Merging: content of the files is tracked rather than the file itself:

« This allows for a greater element of tracking and a smarter and more automated
process of merging

 SVN is unable to accomplish this, and will throw a conflict if, e.g., a file name is
changed and differs from the name in the central repository

« Gitis able to solve this problem with its use of managing a local repository and
tracking individual changes to the code

INITIALIZATION
REPOSITORY

OF A GIT

C:\> mkdir CoolProject
C:\> cd CoolProject
C:\CoolProject > git init

Initialized empty Git repository in C:/CoolProject/.git
ctxt

C:\CoolProject > notepad README
C:\CoolProject > git add .
C:\CoolProject > git commit -m

1 file changed, 1 insertion(+)
create mode 100644 README.txt

'my first commit'’
[master (root-commit) 7106a52] my first commit

am Windows

UNIX

A Standard of The Open Group®

-based systems such as MacOS (more
related to FreeBSD) and Linux (e.g., the
Ubuntu distros many of you are running)

john@Johns-MBP ~ % mkdir cmsc320 && cd cmsc320
john@Johns-MBP cmsc320 % git init

Initialized empty Git repository in /Users/john/cmsc320/.git/
john@Johns-MBP cmsc320 % touch README.md
john@Johns-MBP cmsc320 % git add .

john@Johns-MBP cmsc320 % git commit -m "First commit!"

GIT BASICS |

The three (or four) states of a file:

* Modified:
* File has changed but not committed
« Staged:

» Marked to go to next commit snapshot
« Committed:

- Safely stored in local database
* Untracked!

* Newly added or removed files

GIT BASICS i

Three main areas of a git project:
 Working directory

« Single checkout of one version of the project.
« Staging area

« Simple file storing information about what will go into your next commit
» Git directory

« What is copied when cloning a repository

Local Operations

GIT BASICS Il

working staging
Three main areas of a git project: directory area

BRANCHES ILLUSTRATED

(Default branch is called “master”; your
first commit will be on this branch.

A
{ Starting October 1, 2020, this will be
called “main” on GitHub.)

> git commit -m ‘my first commit’

BRANCHES ILLUSTRATED

> git commit (x2)

BRANCHES ILLUSTRATED

> git checkout -b bugl23

BRANCHES ILLUSTRATED

> git commit (x2)

BRANCHES ILLUSTRATED

> git checkout master

BRANCHES ILLUSTRATED

\
A B C D
0

> git merge bugl23

BRANCHES ILLUSTRATED

_

> git branch -d bugl23

BRANCHES ILLUSTRATED

"ﬂ T

BRANCHES ILLUSTRATED

T

> git checkout master

BRANCHES ILLUSTRATED

> git merge bugd56

BRANCHES ILLUSTRATED

_
A B C D
F

> git branch -d bug456

BRANCHES ILLUSTRATED

T,

BRANCHES ILLUSTRATED

A B C ID{é{'gij::::E!II

> git rebase master

BRANCHES ILLUSTRATED

> git checkout master
> git merge bug456

WHEN TO BRANCH?

General rule of thumb:

* Anything in the master branch is always deployable.
Local branching is very lightweight!

* New feature? Branch!

« Experiment that you won'’t ever deploy? Branch!
Good habits:

« Name your branch something descriptive (add-1ike-button, refactqor-jo
create-ai-singularity)

« Make your commit messages descriptive, too!

SO YOU WANT SOMEBODY ELSE
TO HOST THIS FOR YOU ...

Git: general distributed version control system

GitHub / BitBucket / GitLab / ...: hosting services for git repositories

In general, GitHub is the most popular:
Lots of big projects (e.g., Python, Bootstrap, Angular, D3, node, Django, Visual

Studio) -~

Lots of ridiculously awesome/“awesome” projects (e.g., .
https://github.com/maxbbraun/trump2cash) BlthCkEt

There are reasons to use the competitors (e.g., private repositories, access
control)

https://github.com/maxbbraun/trump2cash)

0 Overview .| Repositories 19] Projests) Packages

Popular repositories “so c IAL co D I N G” === Customize your pins
KidneyExchange P RGS AMDaIGO N s Y Public

Kidney paired donation optimization code CMSC320 - Introduction to Data Science - Fall 2018

O T Vi PUBLIG V5. PRIVATE

Trackit Public EnvyFree Public
Modular suite that measures a child's sustained selective attention. Computes envy-free allocations of items to agents.
H @ Java 3 2 @ Python 2
John P. Dickerson BE ilian 3
JohnDickerson
Assistant Professor of Computer kidney_solver Public website Public
Science, University of Maryland; Ph.D. Forked Bomiamestimbleidaney. sobies My academic website.
in Computer Science, Carnegie Mellon Solve kidney-exchange instances using Python 2 and Gurobi
Universit
y @ Python YY 2 TeX Y91
Edit profile
A 90 followers - 40 following - ¥ 90 25 contributions in the last year Contribution settings -
Universiiy o ."‘.GT',':GEJ Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep 2020
(® Washington, DC von
& http://jpdickerson.com C LB 2019 o0
Wed a ﬁ

¥ @johnpdickerson (]

Fri TSN10

REVIEW: HOW TO USE

Git commands for everyday usage are relatively simple
« git pull

» Get the latest changes to the code
git add .

« Add any newly created files to the repository for tracking
git add —u

« Remove any deleted files from tracking and the repository
git commit —m ‘Changes’

« Make a version of changes you have made
git push

* Deploy the latest changes to the central repository
Make a repo on GitHub and clone it to your machine:

https://guides.github.com/activities/hello-world/

STUFF TO CLICK ON

Git

e http://git-scm.com/
GitHub

« https://github.com/

 https://quides.qgithub.com/activities/hello-world/

« A..Just do this one. You’ll need it for your tutorial ©.
GitLab

* http://qgitlab.org/
Git and SVN Comparison

o https://qit.wiki.kernel.org/index.php/GitSvnComparison

http://git-scm.com/
https://github.com/
https://guides.github.com/activities/hello-world/
http://gitlab.org/
https://git.wiki.kernel.org/index.php/GitSvnComparison

