
INTRODUCTION TO
DATA SCIENCE
JOHN P DICKERSON

Lecture #8 – 09/23/2021

CMSC320
Tuesdays & Thursdays
5:00pm – 6:15pm

https://cmsc320.github.io/

THE DATA LIFECYCLE

2

Data
collection

Data
processing

Exploratory
analysis

&
Data viz

Analysis,
hypothesis
testing, &

ML

Insight &
Policy

Decision

Version control for tracking code/data and
for managing collaboration.

TODAY’S LECTURE
By popular request …
• Version control primer!
• Specifically, git via GitHub and GitLab
• Thanks: Mark Groves (Microsoft), Ilan Biala & Aaron Perley (CMU), Sharif U., &

the HJCB Senior Design Team!

3

WHAT IS VERSION CONTROL?

4

DEVELOPMENT TOOL
When working with a team, the need for a central repository is essential
• Need a system to allow versioning, and a way to acquire the latest edition of the code

• A system to track and manage bugs was also needed

5

atlassian.com/git/tutorials/what-is-version-control

GOALS OF VERSION CONTROL
Be able to search through revision history and retrieve previous versions of any
file in a project
Be able to share changes with collaborators on a project
Be able to confidently make large changes to existing files

6

NAMED FOLDERS APPROACH
Can be hard to track
Memory-intensive
Can be slow
Hard to share
No record of authorship

7

LOCAL DATABASE OF
VERSIONS APPROACH

Provides an abstraction over finding the right versions of files and replacing them
in the project
Records who changes what, but hard to parse that
Can’t share with collaborators

8

CENTRALIZED VERSION
CONTROL SYSTEMS
A central, trusted repository determines
the order of commits (“versions” of the
project)
Collaborators “push” changes (commits)
to this repository.
Any new commits must be compatible
with the most recent commit. If it isn’t,
somebody must “merge” it in.

Examples: SVN, CVS, Perforce

9

Central
Repository

Developer
A’s local

files

Developer
D’s local

files

Developer
C’s local

files

Developer
B’s local

files

Commit

Checkout Checkout

Commit

Commit Commit

CheckoutCheckout

Dev
A’s
Repo

Dev
B’s
Repo

Dev
C’s
Repo

Dev
D’s
Repo

Commit Commit

Commit

Commit

Push/Fetch

Push/Fetch

Push/Fetch

Push/Fetch
Push/Fetch

Push/Fetch

Centralized Version
Control System

Distributed Version
Control System

DISTRIBUTED VERSION
CONTROL SYSTEMS (DVCS)
No central repository
Every repository has every commit
Examples: Git, Mercurial

10

WHAT IS GIT
Git is a version control system
Developed as a repository system for both local and remote changes
Allows teammates to work simultaneously on a project
Tracks each commit, allowing for a detailed documentation of the project along
every step
Allows for advanced merging and branching operations

11

A SHORT HISTORY OF GIT
Linux kernel development
1991-2002
Changes passed around as archived file
2002-2005
Using a DVCS called BitKeeper
2005
Relationship broke down between two communities
(BitKeeper licensing issues)

12

A SHORT HISTORY OF GIT
Goals:
• Speed

• Simple design

• Strong support for non-linear development (thousands of parallel branches)

• Fully distributed – not a requirement, can be centralized
• Able to handle large projects like the Linux kernel efficiently (speed and data size)

13

A SHORT HISTORY OF GIT
Popularity:
• Git is now the most widely used source code management tool

• 50% of professional software developers use Git (often through GitHub) as their
primary source control system

14

[citation needed, IMO much more J]

GIT IN INDUSTRY
Companies and projects currently using Git
• Google
• Android
• Facebook
• Microsoft
• Netflix
• Linux
• Ruby on Rails
• Gnome
• KDE
• Eclipse
• X.org

15

GIT BASICS
Snapshots, not changes
• A picture of what all your files look like at that moment

• If a file has not changed, store a reference

Nearly every operation is local
• Browsing the history of project
• See changes between two versions

16

WHY GIT IS BETTER
Git tracks the content rather than the files
Branches are lightweight, and merging is a simple process
Allows for a more streamlined offline development process
Repositories are smaller in size and are stored in a single .git directory
Allows for advanced staging operations, and the use of stashing when working
through troublesome sections

17

GIT VS {CVS, SVN, …}
Why you should care:
• Many places use legacy systems that will cause problems in the future – be the

change you believe in!

Git is much faster than SVN:
• Coded in C, which allows for a great amount of optimization

• Accomplishes much of the logic client side, thereby reducing time needed for
communication

• Developed to work on the Linux kernel, so that large project manipulation is at the
forefront of the benchmarks

18

GIT VS {CVS, SVN, …}
Speed benchmarks:

Benchmarks performed by http://git-scm.com/about/small-and-fast

19

http://git-scm.com/about/small-and-fast

GIT VS {CVS, SVN, …}
Git is significantly smaller than SVN
• All files are contained in a small decentralized .git file

• In the case of Mozilla’s projects, a Git repository was 30 times smaller than an
identical SVN repository

• Entire Linux kernel with 5 years of versioning contained in a single 1 GB .git file

• SVN carries two complete copies of each file, while Git maintains a simple and
separate 100 bytes of data per file, noting changes and supporting operations

Nice because you can (and do!) store the whole thing locally

20

GIT VS {CVS, SVN, …}
Git is more secure than SVN
• All commits are uniquely hashed for both security and indexing purposes

• Commits can be authenticated through numerous means

• In the case of SSH commits, a key may be provided by both the client and server to
guarantee authenticity and prevent against unauthorized access

21

GIT VS {CVS, SVN, …}
Git is decentralized:
• Each user contains an individual repository and can check commits against itself,

allowing for detailed local revisioning

• Being decentralized allows for easy replication and deployment

• In this case, SVN relies on a single centralized repository and is unusable without

22

GIT VS {CVS, SVN, …}
Git is flexible:
• Due to it’s decentralized nature, git commits can be stored locally, or committed

through HTTP, SSH, FTP, or even by Email

• No need for a centralized repository

• Developed as a command line utility, which allows a large amount of features to be
built and customized on top of it

23

GIT VS {CVS, SVN, …}
Data assurance: a checksum is performed on both upload and download to
ensure sure that the file hasn’t been corrupted.
Commit IDs are generated upon each commit:
• Linked list style of commits

• Each commit is linked to the next, so that if something in the history was changed,
each following commit will be rebranded to indicate the modification

24

GIT VS {CVS, SVN, …}
Branching:
• Git allows the usage of advanced branching mechanisms and procedures

• Individual divisions of the code can be separated and developed separately within
separate branches of the code

• Branches can allow for the separation of work between developers, or even for
disposable experimentation

• Branching is a precursor and a component of the merging process
Will give an example shortly.

25

GIT VS {CVS, SVN, …}
Merging
• The process of merging is directly related to the process of branching

• Individual branches may be merged together, solving code conflicts, back into the
default or master branch of the project

• Merges are usually done automatically, unless a conflict is presented, in which case
the user is presented with several options with which to handle the conflict

Will give an example shortly.

26

GIT VS {CVS, SVN, …}
Merging: content of the files is tracked rather than the file itself:
• This allows for a greater element of tracking and a smarter and more automated
process of merging

• SVN is unable to accomplish this, and will throw a conflict if, e.g., a file name is
changed and differs from the name in the central repository

• Git is able to solve this problem with its use of managing a local repository and
tracking individual changes to the code

27

INITIALIZATION OF A GIT
REPOSITORY
C:\> mkdir CoolProject
C:\> cd CoolProject
C:\CoolProject > git init
Initialized empty Git repository in C:/CoolProject/.git
C:\CoolProject > notepad README.txt
C:\CoolProject > git add .
C:\CoolProject > git commit -m 'my first commit'
[master (root-commit) 7106a52] my first commit
1 file changed, 1 insertion(+)
create mode 100644 README.txt

john@Johns-MBP ~ % mkdir cmsc320 && cd cmsc320
john@Johns-MBP cmsc320 % git init
Initialized empty Git repository in /Users/john/cmsc320/.git/
john@Johns-MBP cmsc320 % touch README.md
john@Johns-MBP cmsc320 % git add .
john@Johns-MBP cmsc320 % git commit -m "First commit!"-based systems such as MacOS (more

related to FreeBSD) and Linux (e.g., the
Ubuntu distros many of you are running)

GIT BASICS I
The three (or four) states of a file:
• Modified:

• File has changed but not committed
• Staged:

• Marked to go to next commit snapshot
• Committed:

• Safely stored in local database
• Untracked!

• Newly added or removed files

GIT BASICS II
Three main areas of a git project:
• Working directory

• Single checkout of one version of the project.
• Staging area

• Simple file storing information about what will go into your next commit
• Git directory

• What is copied when cloning a repository

GIT BASICS III
Three main areas of a git project:

BRANCHES ILLUSTRATED

master
A

> git commit –m ‘my first commit’

(Default branch is called “master”; your
first commit will be on this branch.
Starting October 1, 2020, this will be
called “main” on GitHub.)

BRANCHES ILLUSTRATED

master

> git commit (x2)

A B C

BRANCHES ILLUSTRATED

bug123

master

> git checkout –b bug123

A B C

BRANCHES ILLUSTRATED

master

> git commit (x2)

A B C

D E

bug123

BRANCHES ILLUSTRATED

master

> git checkout master

A B C

D E

bug123

BRANCHES ILLUSTRATED

bug123

master

> git merge bug123

A B C D E

BRANCHES ILLUSTRATED

master

> git branch -d bug123

A B C D E

BRANCHES ILLUSTRATED

master
A B C D E

F G

bug456

BRANCHES ILLUSTRATED

master
A B C D E

F G

bug456

> git checkout master

BRANCHES ILLUSTRATED

master
A B C D E

F G

> git merge bug456

H

bug456

BRANCHES ILLUSTRATED

master
A B C D E

F G

> git branch -d bug456

H

BRANCHES ILLUSTRATED

master
A B C D E

F G

bug456

BRANCHES ILLUSTRATED

master
A B C D E

> git rebase master

F’ G’

bug456

BRANCHES ILLUSTRATED

master
A B C D E

> git checkout master
> git merge bug456

F’ G’

bug456

WHEN TO BRANCH?
General rule of thumb:
• Anything in the master branch is always deployable.
Local branching is very lightweight!
• New feature? Branch!

• Experiment that you won’t ever deploy? Branch!
Good habits:
• Name your branch something descriptive (add-like-button, refactor-jobs,

create-ai-singularity)

• Make your commit messages descriptive, too!

46

SO YOU WANT SOMEBODY ELSE
TO HOST THIS FOR YOU …
Git: general distributed version control system
GitHub / BitBucket / GitLab / …: hosting services for git repositories
In general, GitHub is the most popular:
Lots of big projects (e.g., Python, Bootstrap, Angular, D3, node, Django, Visual
Studio)
Lots of ridiculously awesome/“awesome” projects (e.g.,
https://github.com/maxbbraun/trump2cash)
There are reasons to use the competitors (e.g., private repositories, access
control)

47

https://github.com/maxbbraun/trump2cash)

“SOCIAL CODING” –
PROS AND CONS,
PUBLIC VS PRIVATE

48

REVIEW: HOW TO USE
Git commands for everyday usage are relatively simple
• git pull

• Get the latest changes to the code
• git add .

• Add any newly created files to the repository for tracking
• git add –u

• Remove any deleted files from tracking and the repository
• git commit –m ‘Changes’

• Make a version of changes you have made
• git push

• Deploy the latest changes to the central repository
Make a repo on GitHub and clone it to your machine:
• https://guides.github.com/activities/hello-world/

49

https://guides.github.com/activities/hello-world/

STUFF TO CLICK ON
Git
• http://git-scm.com/
GitHub
• https://github.com/
• https://guides.github.com/activities/hello-world/
• ^-- Just do this one. You’ll need it for your tutorial J.
GitLab
• http://gitlab.org/
Git and SVN Comparison

• https://git.wiki.kernel.org/index.php/GitSvnComparison

50

http://git-scm.com/
https://github.com/
https://guides.github.com/activities/hello-world/
http://gitlab.org/
https://git.wiki.kernel.org/index.php/GitSvnComparison

