INTRODUCTION TO
DATA SCIENCE

JOHN P DICKERSON

Lecture #6 — 09/16/2021
Lecture #7 — 09/21/2021

CMSC320
Tuesdays & Thursdays
5:00pm — 6:15pm

COMPUTER SCIENCE
UNIVERSITY OF MARYLAND

https://cmsc320.github.io/

REVIEW OF LAST LECTURE(S)

1. NumPy: Python Library for Manipulating nD Arrays
Multidimensional Arrays, and a variety of operations including Linear Algebra

2. Pandas: Python Library for Manipulating Tabular Data, & Tidy Data

Series, Tables (also called DataFrames)
Many operations to manipulate and combine tables/series

3. Relational Databases
Tables/Relations, and SQL (similar to Pandas operations)

4. Apache Spark

Sets of objects or key-value pairs
MapReduce and SQL-like operations

DATA MANIPULATION AND
COMPUTATION

Data Science == manipulating and computing on data
Large to very large, but somewhat “structured” data
We will see several tools for doing that this semester

Thousands more out there that we won’t cover

Need to learn to shift thinking from:

Imperative code to manipulate data structures
to:

Sequences/pipelines of operations on data

Should still know how to implement the operations themselves, especially for debugging
performance (covered in classes like 420, 424), but we won’t cover that much

THE NUMPY STACK

D

Image from Continuum Analytics

NEXT FEW CLASSES

1. NumPy: Python Library for Manipulating nD Arrays
Multidimensional Arrays, and a variety of operations including Linear Algebra

2. Pandas: Python Library for Manipulating Tabular Data

Series, Tables (also called DataFrames)
Many operations to manipulate and combine tables/series

3. Relational Databases
Tables/Relations, and SQL (similar to Pandas operations)

4. Apache Spark

Sets of objects or key-value pairs
MapReduce and SQL-like operations

THE DATA LIFECYCLE

Exploratory Analysis,
Data Data analysis hypothesis

collection processing & testing, &

Data viz ML

Insight &
Policy
Decision

TODAY/NEXT CLASS

= Tables
= Abstraction
= Operations
= Pandas

= Tidy Data

= SQL

TABLES

Special Column, called “Index”, or Variables
“ID”, or “Key” (also called Attributes, or
Usually, no duplicates Allowed Columns, or Labels)
ID age wgt_kg hgt_cm
— 1 12.2 42.3 1451
ObSEValions, e [11.0 408 1438
Rows, or
Tuples - 3 15.6 65.3 165.3
" |4 35.1 84.2 185.8

TABLES

ID Address
age wgt kg hgt_cm 1 College Park, MD, 20742

1 12.2 42 3 145 1 2 Washington, DC, 20001
3 Silver Spring, MD, 20901

11.0 40.8 143.8
15.6 65.3 165.3
35.1 84.2 185.8

AW

199.72.81.55 - - [01/Jul/1995:00:00:01 -0400] "GET /history/apollo/ HTTP/1.0" 200
6245

unicomp6.unicomp.net - - [01/Jul/1995:00:00:06 -0400] "GET /shuttle/countdown/
HTTP/1.0" 200 3985

199.120.110.21 - - [01/Jul/1995:00:00:09 -0400] "GET /shuttle/missions/sts-
73/mission-sts-73.html HTTP/1.0" 200 4085

1. SELECT/SLICING

Select only some of the rows, or some of the

columns, or a combination

ID age wgt_kg hgt_cm Only columns 1 12.2
ID and Age 5 10
1 12.2 42.3 145.1 :
2 11.0 40.8 143.8 3 15.6
3 15.6 65.3 165.3 4 35.1
4 35.1 84.2 185.8
Both
Only rows ot
with wgt > 41
D) 0
ID age wgt_kg hgt_cm 1 129
1 12.2 42.3 145.1 3 156
3 15.6 65.3 165.3
4 35.1
4 35.1 84.2 185.8

2. AGGREGATE/REDUCE

Combine values across a column into a single value

73.9 232.6 640.0

SUM
ID age wgt_kg hgt_cm
1 122 423 1451 MAX 35.1 842 1858
2 11.0 408 143.8
3 156 653 165.3
4 35.1 84.2 185.8 SUM(wgt_kg"2 - hgt_cm)

What about ID/Index column? 14167.66
Usually not meaningful to aggregate across it
May need to explicitly add an ID column

3. MAP

Apply a function to every row, possibly creating more or fewer columns

ID Address ID City State Zipcode

1 College Park, MD, 20742 1 College MD 20742
2 Washington, DC, 20001 —_— Park
3 Silver Spring, MD, 20901 2 Washington DC 20001
3 Silver MD 20901
Spring

Variations that allow one row to generate multiple
rows in the output (sometimes called “flatmap”)

4. GROUP BY

Group tuples together by column/dimension

ID A B C

1 foo 3 6.6

2 bar 2 4.7

3 foo 4 3.1 By ‘A

4 foo 3 80 g A= bar
5 bar 1 1.2

6 bar 2 2.5

7 foo 4 2.3

8 foo 3 8.0

B=1
4. GROUP BY F.;-!

Group tuples together by column/dimension 5= 2
D A B C 2 bar 4.7
1 foo 3 66 6 bar 25
2 bar 2 4.7 B=3
3 foo 4 3.1 By ‘B
4 foo 3 8.0 g 1 oo 6.6
3 bar 1 1.2 4 00 8.0
6 bar 2 2.5 3 00 8.0
7 foo 4 2.3 B=4
8 foo 3 8.0

3 foo 3.1

7 foo 2.3

A=bar,B =1

4. GROUP BY ‘5 12 \

Group tuples together by column/dimension A
ID
D A B C 2 4
1 foo 3 66 6 25
2 bar 2 4.7 A=foo, B =3
3 foo 4 3.1 By ‘A, ‘B’ -
’ ID C
4 foo 3 8.0 > 1 5.6
5 bar 1 1.2 4 8.0
5] bar 2 2.5 3 3.0
7 foo 4 2.3
A=foo,B=4
8 foo 3 8.0
ID C
3 3.1

7 2.3

5. GROUP BY
AGGREGATE
Compute one aggregate per group
ID A B C
1 foo 3 6.6
2 bar 2 4.7
3 foo 4 3.1 o’
4 foo 3 8.0 g&%g:}é 2
3 bar 1 1.2
6 bar 2 2.5
7 foo 4 2.3
8 foo 3 8.0

7.2

B=2
ID A C
2 bar 4.7
6 bar 2.5
B=3
ID A C
1 foo 6.6
4 foo 8.0
8 foo 8.0
B =
ID A C
3 foo 3.1
14 foo 2.3

5. GROUP BY
AGGREGATE

Final result usually seen as a table

ID A B C

B SUM(C

1 foo 3 1 1.2
2 bar 2 4.7 2 7.2
3 foo 4 3.1 Group by B 3 22.6
4 foo 3 8.0 Sumon C 4 5.4
5 bar 1 1.2

6 bar 2 2.5

7 foo 4 2.3

8 3

foo 8.0

6. UNION / INTERSECTION /
DIFFERENCE

Set operations — only if the two tables have identical attributes/columns

1 foo 3 6.6 5 bar 1 1.2 1 foo 3 6.6

> bar 2 47 |Ule bar 2 25 |=— |2 bar 2 47

3 foo 4 3.1 7 foo 4 2.3 3 foo 4 3.1

4 foo 3 8.0 8 foo 3 8.0 4 foo 3 8.0

3 bar 1 1.2

Similarly Intersection and Set Difference 6 bar 2 2.5
manipulate tables as Sets 7 foo 4 23
8 foo 3 8.0

IDs may be treated in different ways, resulting in
somewhat different behaviors

7. MERGE OR JOIN

Combine rows/tuples across two tables if they have the same key

ID A B C
foo 1.2 1

1 3 1
5 0 5 5 x foo 3 1.2
ar .
[><] > bar 2 2.5
3 foo 4 3 2.3
foo 4 2.3
4 foo 3 5 8.0

What about IDs not present in both tables?
Often need to keep them around
Can “pad” with NaN

7. MERGE OR JOIN

Combine rows/tuples across two tables if they have the same key
Outer joins can be used to "pad” IDs that don’t appear in both tables
Three variants: LEFT, RIGHT, FULL

SQL Terminology — pandas has these operations as well

ID A B C

D A B D C
1 foo 3 1 1.2 1 foo 3 12
2 bar 2 | g |2 25 2 bar 2 25
> 13 foo 4 2.3

3 foo 4 3 2.3 :
4 foo 3 5 80 ERLCCI
5 NaN NaN 8.0

SUMMARY

= Tables: A simple, common abstraction
» Subsumes a set of “strings” — a common input

= Operations
= Select, Map, Aggregate, Reduce, Join/Merge, Union/Concat, Group By

= |n a given system/language, the operations may be named differently
= E.g., SQL uses “join”, whereas Pandas uses “merge”

= Subtle variations in the definitions, especially for more complex operations

o
>
w
O

1 foo 3 6.6

2 baz 2 4.7

3 foo 4 3.1 Group By ‘A

4 baz 3 8.0 > A. 1

5 bar 1 1.2 B. 3

6 bar 2 2.5 C. 5

7 foo 4 2.3 D. 8

8 foo 3 80 '
foo -> ...
baz -> ...

HOW MANY GROUPS IN THE bar > ..

ANSWER?

Group By ‘A,
‘B!

ID A B C

1 foo 3 6.6
2 baz 2 4.7
3 foo 4 3.1
4 baz 3 8.0
5 bar 1 1.2
6 bar 2 2.5
7 foo 4 2.3
8 foo 3 8.0

oo & »

Ol WO -

HOW MANY GROUPS IN THE

ANSWER?

(foo, 3) -> ...
(baz, 2) -> ...
(foo, 4) -> ...
(baz, 3) -> ...
(bar, 1) -> ...
(bar, 2) -> ...

ID A B ID C
1 foo 3 2 1.2
2 bar 2 [><] 4 2.5
4 foo 4 6 2.3
5 foo 3 7 8.0 A 1
B. 2
C. 4
D. 6
Inner join:
1 - XX
HOW MANY TUPLES IN THE 2_21
4 —-41
ANSWER? 5 — XX
XX -6

XX -7

ID A B ID C

1 foo 3 2 1.2
2 bar 2 DL |4 2.5
4 foo 4 6 2.3
5 foo 3 4 8.0 A 1
B. 4
FULL OUTER JOIN
C. 6
All IDs will be present in the answer
With NaNs D. 8
Inner join:
1 - X1
HOW MANY TUPLES IN THE 221
4—-41
ANSWER? 5 X I
X-6!

X-71

CONTINUING TO PANDAS ...

1. NumPy: Python Library for Manipulating nD Arrays
Multidimensional Arrays, and a variety of operations including Linear Algebra

2. Pandas: Python Library for Manipulating Tabular Data, & Tidy Data

Series, Tables (also called DataFrames)
Many operations to manipulate and combine tables/series

3. Relational Databases
Tables/Relations, and SQL (similar to Pandas operations)

4. Apache Spark

Sets of objects or key-value pairs
MapReduce and SQL-like operations

PANDAS: HISTORY

= Written by: Wes McKinney
» Started in 2008 to get a high-performance, flexible tool to perform quantitative
analysis on financial data

= Highly optimized for performance, with critical code paths written in Cython or C

= Key constructs:

= Series (like a NumPy Array)
= DataFrame (like a Table or Relation, or R data.frame)

= Foundation for Data Wrangling and Analysis in Python

PANDAS: SERIES

. = Subclass of numpy.ndarray
index values
= Data: any type

Al—=>153 = Index labels need not be ordered
B|—*> | 6 = Duplicates possible but result in
cl > |19 reduced functionality
D|—>|-5

E | |67

PANDAS: DATAFRAME

= Each column can have a different type
= Row and Column index

| f o b = Mutable size: insert and delete
columns (100 ar az qux columns
index ; ; ; ;
A —> 0 X 2.7 True .
= Note the use of word “index” for what
B|—=> |4 y 6 | |Tue we called “key”
cl>|s > | T10 1 [raee = Relational databases use “index” to
mean something else
D|—> |-12 w NA False
= Non-unique index values allowed
E — | 16 a 18 False . .
— — L L Lo = May raise an exception for some

operations

HIERARCHICAL INDEXES

Sometimes more intuitive organization of the data
Makes it easier to understand and analyze higher-dimensional data

e.g., instead of 3-D array, may only need a 2-D array

day Fri Sat Sun Thur first second
bar one 0.469112
Sex smoker two -0.282863
Female No 3.125 2.725 3.329 2.460 baz one -1.509059
Yes 2.683 2.8069 3.500 2.990 . two ‘i-?ieii
00 one 2121
Male No 2.500 3.257 3.115 2.942 o e
Yes 2.741 2.879 3.521 3.058 qux one 0.119209
two -1.044236

dtype: floaté64

ESSENTIAL FUNCTIONALITY

Reindexing to change the index associated with a DataFrame

- Common usage to interpolate, fill in missing values

In [84]: obj3 = Series(['blue’, 'purple', 'yellow'], index=[0, 2, 4])

In [85]: obj3.reindex(range(6), method='ffill")

Out[85]:

0 blue
1 blue
2 purple
3 purple
4 yellow
5 yellow

F

From: Python for Data Analysis; Wes McKinney

ESSENTIAL FUNCTIONALITY

“drop” to delete entire rows or columns
Indexing, Selection, Filtering: very similar to NumPy
Arithmetic Operations

 Result index union of the two input indexes

 Options to do “fill” while doing these operations

n [129]: s2

In [128]: I I: In [130]: s1 + s2
Out[128]: Out[129]: Out[130]:
a 7.3 a -2.1 a 5.2
C -2.5 C 3.6 C 1.1
d 3.4 e -1.5 d NaN
e 1.5 f 4.0 e 0.0
g 3.1 f NaN
g NaN

FUNCTION APPLICATION AND
MAPPING

In [158]: frame = DataFrame(np.random.randn(4, 3), columns=list('bde'),
..... : index=["'Utah', 'Ohio', 'Texas', 'Oregon'])

In [159]: frame In [160]: np.abs(frame)

Out[159]: Out[160]:

b d e b d e
Utah -0.204708 0.478943 -0.519439 Utah 0.204708 0.478943 0.519439
Ohio -0.555730 1.965781 1.393406 Ohio 0.555730 1.965781 1.393406
Texas 0.092908 0.281746 0.769023 Texas 0.092908 0.281746 0.769023
Oregon 1.246435 1.007189 -1.296221 Oregon 1.246435 1.007189 1.296221

In [161]: f = lambda x: x.max() - x.min()

In [162]: frame.apply(f)

Out[162]:

b 1.802165
d 1.684034
e 2.689627

In [163]: frame.apply(f, axis=1)

Out[163]:

Utah
Ohio
Texas
Oregon

0.998382
2.521511
0.676115
2.542656

From: Python for Data Analysis; Wes McKinney

™
o

SORTING AND RANKING

In [169]: obj = Series(range(4), index=['d', 'a', 'b', 'c'])

170]: obj.sort index()
ut[170]:
1
2
3
0

In [187]: frame = DataFrame({'b': [4.3, 7, -3, 2], 'a': [0, 1, O, 1],
8 - -5]

R '‘c¢': [-2, 5, 8, -2.5]})
In [188]: frame In [189]: frame.rank(axis=1)
Out[188]: Out[189]:

a b C a b c
O 0 4.3 -2.0 0O 2 3 1
1 1 7.0 5.0 1 1 3 2
2 0-3.0 8.0 2 2 1 3
3 1 2.0 -2.5 3 2 3 1

<
. ™
From: Python for Data Analysis; Wes McKinney

DESCRIPTIVE AND SUMMARY
STAT I ST I c S Table 5-10. Descriptive and summary statistics

Method Description

count Number of non-NA values

describe Compute set of summary statistics for Series or each DataFrame column
min, max Compute minimum and maximum values

argmin, argmax Compute index locations (integers) at which minimum or maximum value obtained, respectively

idxmin, idxmax Compute index values at which minimum or maximum value obtained, respectively

quantile Compute sample quantile ranging from 0 to 1
sum Sum of values

mean Mean of values

median Arithmetic median (50% quantile) of values
mad Mean absolute deviation from mean value
var Sample variance of values

std Sample standard deviation of values

skew Sample skewness (3rd moment) of values
kurt Sample kurtosis (4th moment) of values
cumsum Cumulative sum of values

cummin, cummax Cumulative minimum or maximum of values, respectively

cumprod Cumulative product of values
diff Compute 1st arithmetic difference (useful for time series)
pct_change Compute percent changes (Tg)

From: Python for Data Analysis; Wes McKinney

CREATING DATAFRAMES

Directly from Dict or Series
From a Comma-Separated File — CSV file

 pandas.read_csv()
 Can infer headers/column names if present, otherwise may want to reindex
From an Excel File

 pandas.read_excel()
From a Database using SQL (see the reading for an example)

From Clipboard, URL, Google Analytics, ...

(e
. ™
From: Python for Data Analysis; Wes McKinney

MORE...

Unique values, Value counts
Correlation and Covariance

Functions for handling missing data — in a few classes

* dropna(), fillna()
Broadcasting

Pivoting

We will see some of these as we discuss data wrangling, cleaning, etc.

CONTINUING TO TIDY DATA ...

1. NumPy: Python Library for Manipulating nD Arrays
Multidimensional Arrays, and a variety of operations including Linear Algebra

2. Pandas: Python Library for Manipulating Tabular Data, & Tidy Data

Series, Tables (also called DataFrames)
Many operations to manipulate and combine tables/series

3. Relational Databases
Tables/Relations, and SQL (similar to Pandas operations)

4. Apache Spark

Sets of objects or key-value pairs
MapReduce and SQL-like operations

TABLES

Variables
(also called Attributes, or
Index Columns, or Labels)
ID age wgt_kg hgt_cm
— 1 12.2 42.3 145.1
ObSEIVALONS, e [11.0 408 1438
Rows, or
Tuples " 3 15.6 65.3 165.3
_— 14 35.1 84.2 185.8
But also:

 Names of files/DataFrames = description of one dataset
« Enforce one data type per dataset (ish)

EXAMPLE

Identifier Variable: measure or attribute:

e age, weight, height, sex

Value: measurement of attribute:

« 12.2,42.3kg, 145.1cm, M/F

Observation: all measurements for an object
» Aspecific personis [12.2,42.3, 145.1, F]

TIDYING DATA |

Name Treatment A Treatment B

John Smith - 2

Jane Doe 16 11

Mary Johnson 3 1
2?272?222222?2??7?

Treatment A Treatment B Treatment C Treatment D

John Smith - 2 - -

Jane Doe 16 11 4 1

Mary Johnson 3 1 - 2
VIV

F

Thanks to http://jeannicholashould.com/tidy-data-in-python.html

TIDYING DATA I etren

Treatment Result

A
B
C
D
A
B
C 4
D
A
B
C
D

John Smith
John Smith
John Smith
John Smith
Jane Doe

Jane Doe

Jane Doe

Jane Doe

Mary Johnson

Mary Johnson

Mary Johnson

Mary Johnson

MELTING DATA

What we just did was “unpivot” the dataframe from wide to long format.
Pandas: Melt ()
This function is useful to massage a DataFrame into a format where:

* One or more columns are identifier variables (id_vars),

« All other columns, considered measured variables (value vars), are “unpivoted” to
the row axis, leaving just two non-identifier columns, ‘variable’ and ‘value’.

Name Treatment A TreatmentB TreatmentC Treatment D m - Jreatment Result
onn smi -
]Ohn Smlth - 2 - - John Smith 2
John Smith -
Jane Doe 16 11 4 1 John Smith -
Jane Doe 16
Mary Johnson 3 1 - 2 Jane Doe n

Jane Doe

Jane Doe

Mary Johnson

—|w |-

Mary Johnson

Mary Johnson

TIO|F > (TO|F|»> (T O >
'S

Mary Johnson

https://pandas.pydata.org/docs/reference/api/pandas.melt.html

MELTING DATA |

religion $10-20k $20-30k $30-40k $40-50k $50-75k
Agnostic 27 34 60 81 76 137
Atheist 12 27 37 52 35 70
Buddhist 27 21 30 34 33 58
Catholic 418 617 732 670 638 1116
Dont

kr?c?w/refused 15 14 15 11 10 35
Evangelical Prot 575 869 1064 982 881 1486
Hindu 1 9 7 9 11 34
Historicall

bk bl 228 244 236 238 197 223
Jehovahs 20 27 24 24 21 30
Witness

Jewish 19 19 25 25 30 95

DP9 797?

MELTING DATA I

pd.melt (df,
["religion"],
var name="income",
value name="freq")

f df = £ df.sort values(by=["religion"])
f df.head(10)

religion income

Agnostic <$10k 27
Agnostic $30-40k 81
Agnostic $40-50k 76
Agnostic $50-75k 137
Agnostic $10-20k 34
Agnostic $20-30k 60
Atheist $40-50k 35
Atheist $20-30k 37
Atheist $10-20k 27
Atheist $30-40k 52

MORE COMPLICATED

EXAMPLE

Billboard Top 100 data for songs, covering their position on the Top 100 for 75

weeks, with two “messy” bits:

Column headers for each of the 75 weeks

If a song didn’t last 75 weeks, those columns have are null

artist.in date.ente date.pea x1st.wee x2nd.we
verted red ked ek
Destiny's Independent _ 2000-09- 2000-11-

2000 g Women Part| 550 Rock 23 18 78 63.0

2000 Santana Maria, Maria 4:18 Rock %(2)00-02- ggoo-o4- 15 8.0
Savage | Knew | Loved _ 1999-10- 2000-01-

2000 Garden You 4:07 Rock 23 29 71 48.0

2000 Madonn yisic 3:45 Rock 2000-08- 2000-09- 23.0
a 12 16
Aguilera, Come On Over 2000-08- 2000-10-

2000 Christina Baby 3:38 Rock 05 14 57 47.0

Doesn't Really _ 2000-06- 2000-08-
2000 Janet Matter 4:17 Rock 17 26 59 52.0

Thanks to http://jeannicholashould.com/tidy-data-in-python.html

X

MORE COMPLICATED
EXAMPLE

Keep identifier variables
id vars = ["year",
"artist.inverted",
"track",
"time",
"genre",
"date.entered",

"date.peaked"]

Melt the rest into week and rank columns
df = pd.melt(frame=df,

id vars=id vars,

var name="week",

value name="rank")

Creates one row per week, per record, with its rank

MORE COMPLICATED
EXAMPLE

Formatting

df["week"] = df['week'].str.extract('(\d+)’,
expand=False).astype(int)

df["rank"] = df["rank"].astype(int)

[.., “x2nd.week”, 63.0] > [.., 2, 63]

Cleaning out unnecessary rows
df = df.dropna()

Create "date" columns

df['date'] = pd.to datetime(
df['date.entered']) +
pd.to timedelta(df['week'], unit='w') —
pd.DateOffset (weeks=1)

MORE COMPLICATED
EXAMPLE

Ignore now-redundant, messy columns
df = df[["year",

"artist.inverted",

"track",

"time",

"genre",

"week",

"rank",

"date"]]

df = df.sort values(ascending=True,
by=["year","artist.inverted", "track", "week","rank"])

Keep tidy dataset for future usage
billboard = df

df.head(10)

MORE COMPLICATED
EXAMPLE

3:::;“ week rank
2000 2Pac Baby Don't Cry (Keep YaHead Up ll) 4:22 Rap 1 87 2000-02-26
2000 2 Pac Baby Don't Cry (Keep YaHead Up Il) 4:22 Rap 2 82 2000-03-04
2000 2Pac Baby Don't Cry (Keep YaHead Up ll) 4:22 Rap 3 72 2000-03-11
2000 2Pac Baby Don't Cry (Keep YaHead Up ll) 4:22 Rap 4 77 2000-03-18
2000 2 Pac Baby Don't Cry (Keep YaHead Up Il) 4:22 Rap 5 87 2000-03-25
2000 2Pac Baby Don't Cry (Keep YaHead Up ll) 4:22 Rap 6 94 2000-04-01
2000 2 Pac Baby Don't Cry (Keep YaHead Up Il) 4:22 Rap 7 99 2000-04-08
The Hardest Part Of Breaking Up (Is . na.
2000 2Gether Getting Ba... 3115 R&B 1 91 2000-09-02
The Hardest Part Of Breaking Up (Is . na.
2000 2Gether Getting Ba... 3115 R&B 2 87 2000-09-09
The Hardest Part Of Breaking Up (Is . na.
2000 2Gether Getting Ba... 3115 R&B 3 92 2000-09-16

2222222222227

ON WE GO! TO RELATIONAL
DATABASES & SQL!

1. NumPy: Python Library for Manipulating nD Arrays
Multidimensional Arrays, and a variety of operations including Linear Algebra

2. Pandas: Python Library for Manipulating Tabular Data, & Tidy Data

Series, Tables (also called DataFrames)
Many operations to manipulate and combine tables/series

3. Relational Databases
Tables/Relations, and SQL (similar to Pandas operations)

4. Apache Spark

Sets of objects or key-value pairs
MapReduce and SQL-like operations

TODAY’S LECTURE

Relational data:

 What is a relation, and how do they interact?
Querying databases:

« SQL

« SAQLite

 How does this relate to pandas?

Joins

™
Tp’

Thanks to Zico Kolter for some structure for this lecture!

RELATION

Simplest relation: a table aka tabular data full of unique tuples

Variables
(called attributes)

IR I

Labels age wgt kg hgt cm
ety | 1 12.2 42.3 145.1
Observations = |2 11.0 40.8 143.8
(called tuples) —— I3 156 653 165.3
" |4 35.1 84.2 185.8

WHERE DOES THIS BREAK

DOWN?

What’s wrong with our last
example???

* Lots of duplicated data
What happens if we add
years?

* Need to be able to have
different units of observation
or different views!

What do we need?

 Different tables to store
different kinds of
observations!

artist.in

year o ted track time genre week rank date

2000 2 Pac Baby Don't Cry (Keep Ya Head Up II) 422 Rap 1 87 2000-02-26
2000 2 Pac Baby Don't Cry (Keep Ya Head UpII) 4222 Rap 2 82 2000-03-04
2000 2 Pac Baby Don't Cry (Keep Ya Head Up II) 4222 Rap 3 72 2000-03-11
2000 2 Pac Baby Don't Cry (Keep Ya Head Up II) 4:22 Rap 4 77 2000-03-18
2000 2 Pac Baby Don't Cry (Keep Ya Head Up II) 422 Rap 5 87 2000-03-25
2000 2 Pac Baby Don't Cry (Keep Ya Head UpII) 4222 Rap 6 94 2000-04-01
2000 2 Pac Baby Don't Cry (Keep Ya Head Up II) 4:22 Rap 7 99 2000-04-08
2000 2Ge+her étftﬂgrgjﬁ Part Of Breaking Up (Is 5 1< pep 1 91 2000-09-02
2000 2Gether étftigrS:St PartOfBreaking Up (5 315 e 2 &7 2000-09-09
2000 2Gether n¢HardestPartOfBreaking Up(ls 5\ pop 3 92 2000-09-16

Getting Ba...

PRIMARY KEYS

wgt_kg hgt_cm nat_id

Nationality
USA
Canada

Mexico

The primary key is a unique identifier for every tuple in a relation

« Each tuple has exactly one primary key

AREN’T THESE CALLED
“INDEXES”?

Yes, in Pandas; but not in the database world

For most databases, an “index” is a data structure used to speed up retrieval of
specific tuples

For example, to find all tuples with nat_id = 2:

« We can either scan the table — O(N) o B s W e o
* Or use an “index” (e.g., binary tree) — O(log N) SRS e Ousbosodres Adum Caml Nov. 14,2016

iniro o datsbases Intro 10 computers Nickolas Homes Feb 5, 2018

Index Table

Intro 10 software —eep | INRFO %0 SORWArE Ncholas Robin ~ Feb 7, 2018

FOREIGN KEYS

wgt kg hgt cm nat_id Nationality
USA
2 Canada
3 Mexico

Foreign keys are attributes (columns) that point to a different table’s primary key

- A table can have multiple foreign keys

RELATION SCHEMA

A list of all the attribute names, and their domains
SQL Statements

create table department To create Tables
(dept_name varchar(20),
building varchar(15),
budget numeric(12,2) check (budget > 0),
primary key (dept_name)

);

create table instructor (

ID char(5),

name varchar(20) not null,
dept_name varchar(20),
salary numeric(8,2),

primary key (/D),
foreign key (dept_name) references department

SCHEMA DIAGRAMS

takes student
D » ID <
— v name
COUrse id dept_name
sec_id tot_cred
semester
year
: grade
section course
b course_id < 3 course_id department advisor
—»{ sec_id - title l—_: dept_name s_id
» semester — dept_name — il ding — i id
> year D : credits —
| Building time_slot budget
ro00m_no time_slot_id
time_slot_id [day
start_time
end_time
prereq instructor
classroom — course_id ID <
| building prereq_id name
»| room_no dept_name
capacity teaches salary
ID
|| course id
sec_id
semester
year

SEARCHING FOR ELEMENTS

Find all people with nationality Canada (nat_id = 2):
2?27?2?22222?2?2?2?222?7

ID age wgt kg hgt cm nat_id
1 12.2 42.3 145.1 1
2 11.0 40.8 143.8 1
3 15.6 65.3 165.3 2
4 35.1 84.2 185.8 1
5 3
6 1

18.1 62.2 176.2
19.6 82.1 180.1

on) @

INDEXES

Like a hidden sorted map of references to a specific attribute (column) in a table;
allows O(log n) lookup instead of O(n)

loc ID age wgt kg hgt cm nat_id m

0 1 12.2 42.3 145.1 1 1 0, 384,
640

128 11.0 40.8 1438 2 5 128, 256

256 15.6 65.3 165.3 2 3 512

18.1 62.2 176.2 3
19.6 82.1 180.1 1

2
3
384 4 35.1 84.2 185.8 1
S
6

INDEXES

Actually implemented with data structures like B-trees

» (Take courses like CMSC424 or CMSC420)

But: indexes are not free

« Takes memory to store

« Takes time to build

» Takes time to update (add/delete a row, update the column)
But, but: one index is (mostly) free

* Index will be built automatically on the primary key

Think before you build/maintain an index on other attributes!

RELATIONSHIPS

Primary keys and foreign keys define interactions between different tables aka
entities. Four types:

* One-to-one
* One-to-one-or-none
* One-to-many and many-to-one

« Many-to-many

Connects (one, many) of the rows in one table to (one, many) of the rows in
another table

ONE-TO-MANY & MANY-TO-
ONE

One person can have one nationality in this example, but one nationality can
include many people.

Person Nationality

ID age wgt_kg hgt_cm nat_id ID Nationality
1 12.2 42.3 1451 1 1 USA
11.0 40.8 1438 1 2 Canada
3 Mexico

15.6 65.3 165.3 2
35.1 84.2 185.8 1
18.1 62.2 176.2 3
19.6 82.1 180.1 1

OO~ WO

ONE-TO-ONE

Two tables have a one-to-one relationship if every tuple in the first tables
corresponds to exactly one entry in the other

In general, you won’t be using these (why not just merge the rows into one table?)
unless:

« Split a big row between SSD and HDD or distributed

» Restrict access to part of a row (some DBMSs allow column-level access control, but
not all)

« Caching, partitioning, & serious stuff: take CMSC424

ONE-TO-ONE-OR-NONE

Say we want to keep track of people’s cats:

PersonID Cat1 Cat2

1 Chairman Meow Fuzz Aldrin
4 Anderson Pooper Meowly Cyrus
5 Gigabyte Megabyte

People with IDs 2 and 3 do not own cats”, and are not in the table. Each person
has at most one entry in the table.

Person O Cat

Is this data tidy?

*nor do they have hearts, apparently.

MANY-TO-MANY

Say we want to keep track of people’s cats’ colorings:

CatID ColorID Amount

1 Megabyte 1 1 50
2 Meowly Cyrus 1 2 50
3 Fuzz Aldrin 2 2 20
4 Chairman Meow 2 4 40
5 Anderson Pooper 2) 40
6 Gigabyte 3 1 100

One column per color, too many columns, too many nulls

Each cat can have many colors, and each color many cats

ASSOCIATIVE TABLES
— Colors
“ |

1 Megabyte 1 1 50 1 Black
2 Meowly Cyrus 1 2 50 2 Brown
3 Fuzz Aldrin 2 2 20 3 White
4 Chairman Meow 2 4 40 4 Orange
5 Anderson Pooper 5 Neon Green
6 Gigabyte 2 0 40 6 Invisible
3 1 100

Used to model pure relationships (as opposed to discrete entities)

« (CatID and Color ID

ASIDE: PANDAS

So, this kinda feels like pandas ...

* And pandas kinda feels like a relational data system ...
Pandas is not strictly a relational data system:

« No notion of primary / foreign keys

It does have indexes (and multi-column indexes):

« pandas.Index: ordered, sliceable set storing axis labels
« pandas.Multilndex: hierarchical index

Rule of thumb: do heavy, rough lifting at the relational DB level, then fine-grained
slicing and dicing and viz with pandas

SQLITE

On-disk relational database management system (RDMS)

« Applications connect directly to a file

Most RDMSs have applications connect to a server:

« Advantages include greater concurrency, less restrictive locking

« Disadvantages include, for this class, setup time ©

Installation:

* conda install -c anaconda sqglite

* (Included in Docker container & Jupyter install; need install for raw Python)

All interactions use Structured Query Language (SQL)

HOW A RELATIONAL DB FITS
INTO YOUR WORKFLOW Persists!

/
.
- m

Structured output
(trained classifiers,

JSON for D3,
visualizations)

SQLite CLI & GUI
Frontend

Persists!
\

CRASH COURSE IN SQL (IN
PYTHON)

import sglite3

Create a database and connect to it
conn = sqglite3.connect(“cmsc320.db”)
Cursor = conn.cursor()

do cool stuff
conn.close()

Cursor: temporary work area in system memory for manipulating SQL statements
and return values

If you do not close the connection (conn.close()), any outstanding transaction
is rolled back

* (More on this in a bit.)

CRASH COURSE IN SQL (IN
PYTHON)

Make a table
cursor.execute(“""”
CREATE TABLE cats (

id INTEGER PRIMARY KEY,
name TEXT

P97

Capitalization doesn’t matter for SQL reserved words
SELECT = select = SeLeCt

Rule of thumb: capitalize keywords for readability

CRASH COURSE IN SQL (IN
PYTHON)

Insert into the table

cursor.execute (“INSERT INTO cats VALUE (1, 'Megabyte’)”)
cursor.execute(“INSERT INTO cats VALUE (2, ‘Meowly Cyrus’)”)
cursor.execute(“INSERT INTO cats VALUE (3, ‘Fuzz Aldrin’')")

conn.commit ()

Megabyte

2 Meowly Cyrus
3 Fuzz Aldrin

Delete row(s) from the table
cursor.execute(“DELETE FROM cats WHERE id == 2");
conn.commit ()

Megabyte
3 Fuzz Aldrin

CRASH COURSE IN SQL (IN
PYTHON)

Read all rows from a table
for row in cursor.execute(”SELECT * FROM cats”):
print (row)

Read all rows into pandas DataFrame
pd.read sql query(“SELECT * FROM cats”, conn, index col="id")

1 Megabyte
3 Fuzz Aldrin

index_col=“id”: treat column with label “id” as an index
index_col=1: treat column #1 (i.e., “name”) as an index

(Can also do multi-indexing.)

JOINING DATA

A join operation merges two or more tables into a single relation. Different ways
of doing this:

* Inner

« Left

* Right

* Full Outer

Join operations are done on columns that explicitly link the tables together

GOOGLE IMAGE SEARCH ONE
SLIDE SQL JOIN VISUAL

INNER JOIN FULL JOIN

right

table

LEFT JOIN RIGHT JOIN

Image credit: http://www.dofactory.com/sql/join

INNER JOINS
o e

1 Megabyte 1 02-16-2017
2 Meowly Cyrus 2 02-14-2017
3 Fuzz Aldrin 5 02-03-2017
4 Chairman Meow visits
) Anderson Pooper
6 Gigabyte

cats

Inner join returns merged rows that share the same value in the column they are
being joined on (id and cat_id).

id name last_visit

1 Megabyte 02-16-2017
2 Meowly Cyrus 02-14-2017
5 Anderson Pooper 02-03-2017

INNER JOINS

Inner join in pandas
df cats = pd.read sql query(“SELECT * from cats”, conn)
df visits = pd.read sqgl query(“SELECT * from visits”, conn)
df cats.merge(df visits, how = “inner”,
left on = “id”, right on = ”"cat id"”)

Inner join in SQL / SQLite via Python

cursor.execute(“""
SELECT
*
FROM
cats, visits
WHERE
cats.id == visits.cat id

mirmn)

LEFT JOINS

Inner joins are the most common type of joins (get results that appear in both
tables)

Left joins: all the results from the left table, only some matching results from the
right table

id name last_visit

1 Megabyte 02-16-2017
2 Meowly Cyrus 02-14-2017
3 Fuzz Aldrin NULL

4 Chairman Meow NULL

5 Anderson Pooper 02-03-2017
6 Gigabyte NULL

RIGHT JOINS
Take a guess! m

1 Megabyte 1 02-16-2017
Rightjoin 2 Meowly Cyrus 2 02-14-2017
(cats, visits) 3 Fuzz Aldrin 5 02-03-2017
On(id, cat_id) 4 Chairman Meow 7 02-19-2017
NnnnNnAnnnnn 5 Anderson Pooper 12 02-21-2017
........... 6 Gigabyte visits
cats
id name last_visit
Megabyte 02-16-2017
2 Meowly Cyrus 02-14-2017
5 Anderson Pooper 02-03-2017
7 NULL 02-19-2017
12 NULL 02-21-2017

LEFT/RIGHT JOINS

Left join in pandas
df cats.merge(df visits, how = “left”,
left on = “id”, right on = ”"cat id")

Left join in SQL / SQLite via Python
cursor.execute(“SELECT * FROM cats LEFT JOIN visits ON
cats.id == visits.cat id"”)

Right join in pandas
df cats.merge(df visits, how = “right”,
left on = “id”, right on = ”"cat id")

Right join in SQL / SQLite via Python
®

FULL OUTER JOIN

Combines the left and the right join 29?7?7777

id name last_visit

1 Megabyte 02-16-2017

2 Meowly Cyrus 02-14-2017

3 Fuzz Aldrin NULL

4 Chairman Meow NULL

5 Anderson Pooper 02-03-2017

6 Gigabyte NULL

7 NULL 02-19-2017

12 NULL 02-21-2017

Outer join in pandas

df cats.merge(df visits, how = “outer”,
left on = “id”, right on = "cat id")

GROUP BY AGGREGATES

SELECT nat id, AVG(age) as average_age
FROM persons GROUP BY nat id

ID age wgt kg hgt cm nat_id

1 122 423 1451 1 nat id w——
2 11.0 40.8 1438 1 age

3 15.6 65.3 165.3 2 1 19.48

4 35.1 84.2 185.8 1 Z 15.6

5 18.1 62.2 1762 3 3 18.1

6 196 82.1 180.1 1

RAW SQL IN PANDAS

If you “think in SQL” already, you’ll be fine with pandas:

conda install -c anaconda pandasql

Info: http://pandas.pydata.org/pandas-docs/stable/comparison_with_sql.html

Write the query text

q = mrmrn
SELECT
*
FROM
cats

LIMIT 10;"""

Store in a DataFrame
df = sqldf(g, locals())

Motivational teaser — why are we
talking about this "data” stuff?

THE DATA LIFECYCLE

Exploratory dlysis,

DEIF! Data analysis hypothesis Insight &

Policy
Decision

collection processing & testing, &
Data viz ML

PUTTING THE SCIENCE BACK
IN DATA SCIENCE —

To take over the world.

What’s the “Science” part of data sciencce?

No, I mean what mad
hypothesis are you testing?

 Typically, “Science” is “determining some

truth about the world....” ﬁ;ieyrﬂi&ﬂﬁts_;"a“"g il R just trying to take
over the world. That's all.
Suppose you work for a company that is considering Tm:'mff;hgpgfgm
a redesign of their website; does their new 53 -
design (design B) offer any statistical advantage
to their current design (design A)?

Sad truth: Most "mad scientists” are actually just mad engineers

In a linear regression, does a certain variable impact the response?

» Does energy consumption depend on whether or not a day is a weekday or weekend?

Both: concerned with making actual statements about the nature of the world.

o0
[ZK, NM] 9

RECALL: WHAT IS DATA
SCIENCE?

Math & Stats
Knowledge

Drawing useful conclusions from data in a principled way.

Exploration Data

Grad School

+ Identifying patterns in information Science
* Uses visualizations, bringing data together

Prediction: Given what I've seen, what is the most BIRE Gy o

Officemate

Thesis

likely value I'll see in the future? Predictions St°_|e Y°"f
forecast the most likely values of the data Identity Online ;
coming from the data generating process. Substantive | JamesBond

« Making informed guesses Expertise Villain

* Uses machine learning and optimization

Inference: How likely is what | observed representative
of the broader picture? Statistical Inference draws conclusions
(with confidence) about the structure of the data generating process (population).

* Quantifying whether those patterns are reliable
* Uses randomization

Inference vst Prediction (TBD expanded!): inference = learn about the data generation process, prediction = predict what’s
coming nex

Advisor

9

[NM] @

HOW DATA AND MODELS
INTERACT: EXAMPLE 1 Trus Mods! Population: phonomenon under

Machine Learning: :;“’tesggatw"t_ ; o

. : e o ata Generating Process / Sample:
PredIctlon/RegreSS|on/CIaSS|f|cat|on mechanisms that create the data that will be
Learned Model recorded (e.g. probabilistic, noisy)

approximate
explanation

-=T= Data

Generating
Data Generating Process: how and which
Process customers responded (satisfaction, mood,
too busy, don’t care, ignored, etc.)

Example: Understand customer satisfaction.
Sends a text message to all previous
customers to rate on a scale of 1-5.

recording
of events

True Model: the true opinion of all customers

Data: all replies received and recorded.
Tasks:

* Predict Reviews from unseen customers
* Understand product comparison

Sample
Population ‘

0

Statistical Inference:
Experiments/Significance Testing/Bootstrapping

[NM] @

HOW DATA AND MODELS | |
A Modet!. theory or e(xp:a{]atlon_of)the data
INTERACT: EXAMPLE 2 T T

_ , Fit Model: an instance of a model that is
Machine Learning: likely to explain a fixed dataset.

Learned Model the number of parking tickets and the
weather?

Data Generating Process: data recorded of
parking ticket and weather; noisy
observations!

approximate
explanation

-=TT= Data
- Model: more parking tickets are issued
Generating when the weather is temperate (neither hot
Process nor cold).

Fit Model: quantitative relationship for a
dataset:

« E.g, On data of tickets and weather in
San Diego, a car is 5x more likely to get
a ticket when the weather is temperate.

* Model fit on data from Minneapolis might
specify a different quantity (e.g. 3x) but

same structure.

recording
of events

Sample
Population ‘

F

Statistical Inference: o
[NM]

Experiments/Significance Testing/Bootstrapping

WHAT MAKES A MODEL
GOOD?

A fit model finds the most likely parameters that explain the
observed data under the given model.

These parameters are found by minimizing a loss function —
typically some notion of ‘error’ or ‘cost’.

A model is good if it effectively explains the phenomenon under
investigation. Two questions:

1. Is the model choice reasonable? Does the structure of the
model capture the general understanding of how the Data
Generating Process behaves?

2. Does the fit model describe the data well? How small is the
error?

&) is)about the applicability of the model to new observations
ias).

§2) is about the ability of a model to explain the observed data
variance).

* More later on this semester!

Actual Class {

re——— Relevant Information —

Predicted Class

4

Positive

Negative

Positive

True Positive (TP)

False Negative (FN)

Type II Error

Sensitivity
TP
(TP + FN)

Negative

False Positive (FP)

Type I Error

True Negative (TN)

Specificity
TN
(TN + FP)

Precision
TP
(TP + FP)

Negative Predictive
Value

TN
(TN + FN)

Accuracy
TP+ TN

(TP +TN + FP + FN)

False Negatives

Positives

True Negatives

False
Positives

STATISTICAL MODEL:

INFERENCE .

10 A

A statistical model is a quantitative relationship between properties
in observed data.

8

A statistical model is a function S : X — R" that measures properties 6-

of X.

Example: Is there a linear relationship between a

the heights of children and the height of their
biological mother?

« X = mother_height € R
* Y = child_height € R

S is the correlation coefficient (measure of strength of relationship
between the relative movement of mother_height and child_height)

Inference results in interpreting properties (e.g., significance) of the

data generating process from the parameters of the model (e.qg.
correlation).

® Data
=== |inear Regression

PREDICTION MODEL:
REGRESSION

Regression models attempt to predict the most likely

quantitative value associated to an observation (set of & . . child
input features). . . S
= oo.: ’o.. 3
A regressor is a function F: X—R that predicts the value “es -_-;-?r “_“. __ .
y€ER of an observation xeX. 70 i | f—u’-!'r'.“'-‘ g
oo .o. ..3= - r&:a:!.'-:: 2 o? o E ‘
N ot T A
: : : *1, gt el 3 o 3
Example: Given the heights of a child’s parents, 65 b B O S
what is the height of their child? A -E..f;f;g!:gi, 5
- X = (father_height, mother_height) € R2 BOSI e R
Y = child_height € R .o .
- F predicts child heights. 55 .

64 66 68 70 72 74 76
MidParent

Regression results in having a model that we can use to
predict a numerical value for data that we have not see
yet.

PREDICTION MODEL:
CLASSIFICATION

Classification models attempt to predict the most Data with Binary Response
likely class associated to an observation (set of input |
features))

 Class is a nominal attribute (e.g., 1="YES’ v 0="NO’). * o = s o
A classifier is a function F: X—Y that predicts whether an ? o 00 8, ’0 .’,. ° 0
observation xeX belongs to a class ye€Y. | 0™ ® o 085 oo’

< 0 “.

Example: Given product purchase attributes (item, price, .°0 - e oo o 2 '.. R, 8 Q
age, state), can one predict whether the person was ,./' o0 > e : ~
satisfied with their purchase? o '

- X = (item, price, age, state) € R*
« Y = ‘SATISFIED’,'NOT SATISFIED’ € {0,1}
* F predicts product satisfaction.

0.0 0.2 04 0.6

x1

Predicted Regions 0 1

Classification results in a model that we can use to
predict labels for data we have not seen.

A SIDE NOTE ON TERMS

For linear regression we want to know the relationship between an outcome, given
some set/vector of predictors.

Applied
If you have a ML background: Statistics
 Get target, outcome given predictors/observations = 2
lea,:’/::e «.i\:z:;\\
If you have a “stats” background: Computer . Domain
- Get endogenous variables given exogenous variables Science ;i Expertise

If you are more of a “math” person:

« Get dependent variable given one or more independent variables

TEASER I: PUTTING ON OUR
STATS HAT Eating Chocolate, A Little Each Week,

May Lower The Risk Of A Heart Flutter

May 24, 2017 - 6:30 PM ET

Population (Individuals, study subjects, participants) o sme oo

B -ooson averey
* European adults

Treatment: Something (drug, price, web headline) to which a subjects are exposed

« Chocolate consumption

Outcome: dependent variable, response, target, output

* Heart disease

TEASER II: PUTTING ON OUR

STATS HAT

Question: Is there any relation between chocolate

consumption and heart disease?

 Association: any relation

Eating Chocolate, A Little Each Week,
May Lower The Risk Of A Heart Flutter

May 24, 2017 - 6:30 PM ET
Heard on All Things Considered

ﬂ ALLISON AUBREY

* Not necessarily causal! “The rooster does not make the sun rise.”

Data:

« “Among those in the top tier of chocolate consumption, 12 percent
developed or died of cardiovascular disease during the study,
compared to 17.4 percent of those who didn’t eat chocolate.”

- - Howard LeWine of Harvard Health Blog, reported by npr.org

Formulate
hypothesis

Design
experiment

Collect data

Inference/

conclusions

Figure 3-1. The classical statistical inference pipeline

MIASMAS, MIASMATISM,
MIASMATISTS

Bad smells given off by waste and rotting matter ...

Believed to be the main source of disease (cholera)

Suggested remedies:

* “fly to clene air”
* “a pocket full o’posies”
* “fire off barrels of gunpowder”

100

JO(H)N SNOW, 1813—58

Which one?

* https://en.wikipedia.org/wiki/John_Snow

=) ——

A public house built at the
epicenter of a truly virulent
cholera outbreak circa 1800s

Big name (Jon, not John)
in the North, let down by
some writers

Big name in epidemiology,
the study of determinants
of population-level disease

101

JOHN SNOW’S MAP
I

U Southwark&
Y oot \‘[‘z-!u)Fhall
| . A f e Al
Southwark&
g Vauxhall
‘Lambeth

Some houses served by S&V, which drew water from
the Thames; otherws by Lambeth, which didn’t

Snow’s Map:

Black bar represents one death.

Multiple deaths at same address -
bars stacked on top of each other

Black discs mark the locations of water
pumps.
Creates a “natural experiment”

A® 8

C.T Chefkns Lib Soubampten DU Laoden

TERMINOLOGY TEASER

Treatment: Something (drug, price, web headline) to which subjects are exposed
Treatment group
» A group of subjects exposed to a specific treatment

Control group
* A group of subjects exposed to no (or standard) treatment

Randomization
* The process of randomly assigning subjects to treatments

Subjects
* The items (web visitors, patients, etc.) that are exposed to treatments

Test statistic
* The metric used to measure the effect of the treatment

103

QUESTIONS

Treatment Group ???7?7???7??
Control Group ???????7??

Which houses were part of the treatment group?

 All houses in the region of overlap.

* Houses served by S&V (dirty water)
in the region of overlap.

* Houses served by Lambeth (clean water)
in the region of overlap?

In the language of stats:

« S&V houses as the treatment group
« Lambeth houses at the control group.

|

London Water Supply e | |

- Southwark &
Vauxhall

Both

-

f ‘ A

Southwark &
Vauxhall

Lambeth

« Acrucial element in Snow’s analysis was that the people in the two groups were comparable to each

other, apart from the treatment.

104

JOHN SNOW’S EXPERIMENT

“... there is no difference whatever in the houses or the people receiving
the supply of the two Water Companies, or in any of the physical _— -
conditions with which they are surrounded ...” Lt

The only difference was in the water supply, “one group being supplied
with water containing the sewage of London, and amongst it, whatever
might have come from the cholera patients, the other group having water
quite free from impurity.”

The map displays a striking revelation—the deaths are roughly clustered
around the Broad Street pump.

Supply Area Cholera Deaths Deaths/10k Houses

S & V (Dirty Water) 40,046 1,263 315
Lambeth (Clean Water) 26,107 98 37

105

Rest of London 256,423 1,422 59

NEXT CLASS:
EXPLORATORY ANALYSIS

106

