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REVIEW OF LAST LECTURE(S)
1. NumPy: Python Library for Manipulating nD Arrays

Multidimensional Arrays, and a variety of operations including Linear Algebra

2. Pandas: Python Library for Manipulating Tabular Data, & Tidy Data
Series, Tables (also called DataFrames)
Many operations to manipulate and combine tables/series

3. Relational Databases
Tables/Relations, and SQL (similar to Pandas operations)

4.    Apache Spark
Sets of objects or key-value pairs 
MapReduce and SQL-like operations
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DATA MANIPULATION AND 
COMPUTATION
Data Science == manipulating and computing on data

Large to very large, but somewhat “structured” data
We will see several tools for doing that this semester

Thousands more out there that we won’t cover

Need to learn to shift thinking from:

Imperative code to manipulate data structures
to: 

Sequences/pipelines of operations on data

Should still know how to implement the operations themselves, especially for debugging 
performance (covered in classes like 420, 424), but we won’t cover that much
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THE NUMPY STACK
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Image from Continuum Analytics



NEXT FEW CLASSES
1. NumPy: Python Library for Manipulating nD Arrays

Multidimensional Arrays, and a variety of operations including Linear Algebra

2. Pandas: Python Library for Manipulating Tabular Data 
Series, Tables (also called DataFrames)
Many operations to manipulate and combine tables/series

3. Relational Databases
Tables/Relations, and SQL (similar to Pandas operations)

4.    Apache Spark
Sets of objects or key-value pairs 
MapReduce and SQL-like operations
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THE DATA LIFECYCLE
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TODAY/NEXT CLASS
§ Tables

§ Abstraction
§ Operations

§ Pandas

§ Tidy Data

§ SQL
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TABLES 
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ID age wgt_kg hgt_cm

1 12.2 42.3 145.1

2 11.0 40.8 143.8

3 15.6 65.3 165.3

4 35.1 84.2 185.8

Observations,
Rows, or 

Tuples

Variables
(also called Attributes, or 

Columns, or Labels)

Special Column, called “Index”, or 
“ID”, or “Key”

Usually, no duplicates Allowed



TABLES 
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ID age wgt_kg hgt_cm

1 12.2 42.3 145.1

2 11.0 40.8 143.8

3 15.6 65.3 165.3

4 35.1 84.2 185.8

ID Address
1 College Park, MD, 20742
2 Washington, DC, 20001
3 Silver Spring, MD, 20901

199.72.81.55 - - [01/Jul/1995:00:00:01 -0400] "GET /history/apollo/ HTTP/1.0" 200 
6245
unicomp6.unicomp.net - - [01/Jul/1995:00:00:06 -0400] "GET /shuttle/countdown/ 
HTTP/1.0" 200 3985
199.120.110.21 - - [01/Jul/1995:00:00:09 -0400] "GET /shuttle/missions/sts-
73/mission-sts-73.html HTTP/1.0" 200 4085



1. SELECT/SLICING
Select only some of the rows, or some of the 
columns, or a combination
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ID age wgt_kg hgt_cm
1 12.2 42.3 145.1
2 11.0 40.8 143.8
3 15.6 65.3 165.3
4 35.1 84.2 185.8

ID age
1 12.2
2 11.0
3 15.6
4 35.1

Only columns
ID and Age

Only rows 
with wgt > 41

Both

ID age wgt_kg hgt_cm
1 12.2 42.3 145.1
3 15.6 65.3 165.3
4 35.1 84.2 185.8

ID age

1 12.2

3 15.6

4 35.1



2. AGGREGATE/REDUCE
Combine values across a column into a single value
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ID age wgt_kg hgt_cm
1 12.2 42.3 145.1
2 11.0 40.8 143.8
3 15.6 65.3 165.3
4 35.1 84.2 185.8

SUM

SUM(wgt_kg^2 - hgt_cm)

73.9 232.6 640.0

MAX 35.1 84.2 185.8

14167.66What about ID/Index column?
Usually not meaningful to aggregate across it
May need to explicitly add an ID column



3. MAP
Apply a function to every row, possibly creating more or fewer columns
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ID Address
1 College Park, MD, 20742
2 Washington, DC, 20001
3 Silver Spring, MD, 20901

Variations that allow one row to generate multiple 
rows in the output (sometimes called “flatmap”)

ID City State Zipcode
1 College 

Park
MD 20742

2 Washington DC 20001
3 Silver 

Spring
MD 20901



4. GROUP BY
Group tuples together by column/dimension
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ID A B C
1 foo 3 6.6
2 bar 2 4.7
3 foo 4 3.1
4 foo 3 8.0
5 bar 1 1.2
6 bar 2 2.5
7 foo 4 2.3
8 foo 3 8.0

ID B C
1 3 6.6
3 4 3.1
4 3 8.0
7 4 2.3
8 3 8.0

ID B C
2 2 4.7
5 1 1.2
6 2 2.5

A = foo

A = bar
By ‘A’



4. GROUP BY
Group tuples together by column/dimension
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ID A B C
1 foo 3 6.6
2 bar 2 4.7
3 foo 4 3.1
4 foo 3 8.0
5 bar 1 1.2
6 bar 2 2.5
7 foo 4 2.3
8 foo 3 8.0

By ‘B’

ID A C
5 bar 1.2

B = 1

ID A C
2 bar 4.7
6 bar 2.5

ID A C
3 foo 3.1
7 foo 2.3

ID A C
1 foo 6.6
4 foo 8.0
8 foo 8.0

B = 3

B = 2

B = 4



4. GROUP BY
Group tuples together by column/dimension
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ID A B C
1 foo 3 6.6
2 bar 2 4.7
3 foo 4 3.1
4 foo 3 8.0
5 bar 1 1.2
6 bar 2 2.5
7 foo 4 2.3
8 foo 3 8.0

By ‘A’, ‘B’

ID C
5 1.2

A = bar, B = 1

ID C
2 4.7
6 2.5

ID C
3 3.1
7 2.3

ID C
1 6.6
4 8.0
8 8.0

A = foo, B = 3

A = bar, B = 2

A = foo, B = 4



5. GROUP BY 
AGGREGATE
Compute one aggregate per group
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ID A B C
1 foo 3 6.6
2 bar 2 4.7
3 foo 4 3.1
4 foo 3 8.0
5 bar 1 1.2
6 bar 2 2.5
7 foo 4 2.3
8 foo 3 8.0

Group by ‘B’
Sum on C

ID A C
5 bar 1.2

B = 1

ID A C
2 bar 4.7
6 bar 2.5

ID A C
3 foo 3.1
7 foo 2.3

ID A C
1 foo 6.6
4 foo 8.0
8 foo 8.0

B = 3

B = 2

B = 4

Sum (C)
1.2

B = 1

B = 3

B = 2

B = 4

Sum (C)
22.6

Sum (C)
7.2

Sum (C)
5.4



5. GROUP BY 
AGGREGATE
Final result usually seen as a table

ID A B C
1 foo 3 6.6
2 bar 2 4.7
3 foo 4 3.1
4 foo 3 8.0
5 bar 1 1.2
6 bar 2 2.5
7 foo 4 2.3
8 foo 3 8.0

Group by ‘B’
Sum on C

Sum (C)
1.2

B = 1

B = 3

B = 2

B = 4

Sum (C)
22.6

Sum (C)
7.2

Sum (C)
5.4

B SUM(C )
1 1.2
2 7.2
3 22.6
4 5.4
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6. UNION / INTERSECTION / 
DIFFERENCE
Set operations – only if the two tables have identical attributes/columns
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ID A B C
1 foo 3 6.6
2 bar 2 4.7
3 foo 4 3.1
4 foo 3 8.0

ID A B C
5 bar 1 1.2
6 bar 2 2.5
7 foo 4 2.3
8 foo 3 8.0

U

ID A B C
1 foo 3 6.6
2 bar 2 4.7
3 foo 4 3.1
4 foo 3 8.0
5 bar 1 1.2
6 bar 2 2.5
7 foo 4 2.3
8 foo 3 8.0

Similarly Intersection and Set Difference 
manipulate tables as Sets

IDs may be treated in different ways, resulting in 
somewhat different behaviors



7. MERGE OR JOIN
Combine rows/tuples across two tables if they have the same key
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ID A B
1 foo 3
2 bar 2
3 foo 4
4 foo 3

ID C
1 1.2
2 2.5
3 2.3
5 8.0

ID A B C
1 foo 3 1.2
2 bar 2 2.5
3 foo 4 2.3

⨝

What about IDs not present in both tables?
Often need to keep them around
Can “pad” with NaN



7. MERGE OR JOIN
Combine rows/tuples across two tables if they have the same key
Outer joins can be used to ”pad” IDs that don’t appear in both tables

Three variants: LEFT, RIGHT, FULL
SQL Terminology – pandas has these operations as well
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ID A B
1 foo 3
2 bar 2
3 foo 4
4 foo 3

ID C
1 1.2
2 2.5
3 2.3
5 8.0

ID A B C
1 foo 3 1.2
2 bar 2 2.5
3 foo 4 2.3
4 foo 3 NaN
5 NaN NaN 8.0

⟗



SUMMARY
§ Tables: A simple, common abstraction

§ Subsumes a set of “strings” – a common input

§ Operations
§ Select, Map, Aggregate, Reduce, Join/Merge, Union/Concat, Group By

§ In a given system/language, the operations may be named differently
§ E.g., SQL uses “join”, whereas Pandas uses “merge”

§ Subtle variations in the definitions, especially for more complex operations
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HOW MANY GROUPS IN THE 
ANSWER?

A. 1
B. 3
C. 5
D. 8

ID A B C
1 foo 3 6.6
2 baz 2 4.7
3 foo 4 3.1
4 baz 3 8.0
5 bar 1 1.2
6 bar 2 2.5
7 foo 4 2.3
8 foo 3 8.0

Group By ‘A’

foo -> ...
baz -> …
bar -> …
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ID A B C
1 foo 3 6.6
2 baz 2 4.7
3 foo 4 3.1
4 baz 3 8.0
5 bar 1 1.2
6 bar 2 2.5
7 foo 4 2.3
8 foo 3 8.0

Group By ‘A’, 
‘B’

HOW MANY GROUPS IN THE 
ANSWER?

A. 1
B. 3
C. 4
D. 6

(foo, 3) -> ...
(baz, 2) -> ...
(foo, 4) -> ...
(baz, 3) -> ...
(bar, 1) -> ...
(bar, 2) -> ...
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ID A B
1 foo 3
2 bar 2
4 foo 4
5 foo 3

ID C
2 1.2
4 2.5
6 2.3
7 8.0

⨝

HOW MANY TUPLES IN THE 
ANSWER?

A. 1
B. 2
C. 4
D. 6

Inner join:
1 – XX
2 – 2 !!
4 – 4 !!
5 – XX
XX – 6
XX – 7 24



ID A B
1 foo 3
2 bar 2
4 foo 4
5 foo 3

ID C
2 1.2
4 2.5
6 2.3
7 8.0

⟗

FULL OUTER JOIN

All IDs will be present in the answer
With NaNs

HOW MANY TUPLES IN THE 
ANSWER?

A. 1
B. 4
C. 6
D. 8

Inner join:
1 – X !!
2 – 2 !!
4 – 4 !!
5 – X !!
X – 6 !!
X – 7 !! 25



CONTINUING TO PANDAS …
1. NumPy: Python Library for Manipulating nD Arrays

Multidimensional Arrays, and a variety of operations including Linear Algebra

2. Pandas: Python Library for Manipulating Tabular Data, & Tidy Data 
Series, Tables (also called DataFrames)
Many operations to manipulate and combine tables/series

3. Relational Databases
Tables/Relations, and SQL (similar to Pandas operations)

4.    Apache Spark
Sets of objects or key-value pairs 
MapReduce and SQL-like operations
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PANDAS: HISTORY
§ Written by: Wes McKinney

§ Started in 2008 to get a high-performance, flexible tool to perform quantitative 
analysis on financial data

§ Highly optimized for performance, with critical code paths written in Cython or C

§ Key constructs: 
§ Series (like a NumPy Array)
§ DataFrame (like a Table or Relation, or R data.frame)

§ Foundation for Data Wrangling and Analysis in Python
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PANDAS: SERIES
§ Subclass of numpy.ndarray

§ Data: any type

§ Index labels need not be ordered

§ Duplicates possible but result in 

reduced functionality

28

Series

• Subclass of numpy.ndarray

• Data: any type

• Index labels need not be ordered

• Duplicates are possible (but 
result in reduced functionality)

5

6

12

-5

6.7

A

B

C

D

E

valuesindex



PANDAS: DATAFRAME
§ Each column can have a different type
§ Row and Column index
§ Mutable size: insert and delete 

columns

§ Note the use of word “index” for what 
we called “key”
§ Relational databases use “index” to 

mean something else

§ Non-unique index values allowed
§ May raise an exception for some 

operations
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DataFrame

• NumPy array-like

• Each column can have a 
different type

• Row and column index

• Size mutable: insert and delete 
columns 

0

4

8

-12

16

A

B

C

D

E

index

x

y

z

w

a

2.7

6

10

NA

18

True

True

False

False

False

foo bar baz quxcolumns



HIERARCHICAL INDEXES
Sometimes more intuitive organization of the data
Makes it easier to understand and analyze higher-dimensional data

e.g., instead of 3-D array, may only need a 2-D array 
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DataFrame

• Axis indexing enable rich data alignment, 
joins / merges, reshaping, selection, etc.

day            Fri    Sat    Sun    Thur 
sex    smoker                            
Female No      3.125  2.725  3.329  2.460
       Yes     2.683  2.869  3.500  2.990
Male   No      2.500  3.257  3.115  2.942
       Yes     2.741  2.879  3.521  3.058



ESSENTIAL FUNCTIONALITY
Reindexing to change the index associated with a DataFrame

• Common usage to interpolate, fill in missing values
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b    7.2
c    3.6
d    4.5
e    NaN

In [83]: obj.reindex(['a', 'b', 'c', 'd', 'e'], fill_value=0)
Out[83]: 
a   -5.3
b    7.2
c    3.6
d    4.5
e    0.0

For ordered data like time series, it may be desirable to do some interpolation or filling
of values when reindexing. The method option allows us to do this, using a method such
as ffill which forward fills the values:

In [84]: obj3 = Series(['blue', 'purple', 'yellow'], index=[0, 2, 4])

In [85]: obj3.reindex(range(6), method='ffill')
Out[85]: 
0      blue
1      blue
2    purple
3    purple
4    yellow
5    yellow

Table 5-4 lists available method options. At this time, interpolation more sophisticated
than forward- and backfilling would need to be applied after the fact.

Table 5-4. reindex method (interpolation) options

Argument Description

ffill or pad Fill (or carry) values forward

bfill or backfill Fill (or carry) values backward

With DataFrame, reindex can alter either the (row) index, columns, or both. When
passed just a sequence, the rows are reindexed in the result:

In [86]: frame = DataFrame(np.arange(9).reshape((3, 3)), index=['a', 'c', 'd'],
   ....:                   columns=['Ohio', 'Texas', 'California'])

In [87]: frame
Out[87]: 
   Ohio  Texas  California
a     0      1           2
c     3      4           5
d     6      7           8

In [88]: frame2 = frame.reindex(['a', 'b', 'c', 'd'])

In [89]: frame2
Out[89]: 

Essential Functionality | 123

From: Python for Data Analysis; Wes McKinney



ESSENTIAL FUNCTIONALITY
“drop” to delete entire rows or columns
Indexing, Selection, Filtering: very similar to NumPy
Arithmetic Operations

• Result index union of the two input indexes
• Options to do “fill” while doing these operations

32

          one  two  three
Colorado    0    5      6
Utah        8    9     10
New York   12   13     14

So there are many ways to select and rearrange the data contained in a pandas object.
For DataFrame, there is a short summary of many of them in Table 5-6. You have a
number of additional options when working with hierarchical indexes as you’ll later
see.

When designing pandas, I felt that having to type frame[:, col] to select
a column was too verbose (and error-prone), since column selection is
one of the most common operations. Thus I made the design trade-off
to push all of the rich label-indexing into ix.

Table 5-6. Indexing options with DataFrame

Type Notes

obj[val] Select single column or sequence of columns from the DataFrame. Special case con-
veniences: boolean array (filter rows), slice (slice rows), or boolean DataFrame (set
values based on some criterion).

obj.ix[val] Selects single row of subset of rows from the DataFrame.

obj.ix[:, val] Selects single column of subset of columns.

obj.ix[val1, val2] Select both rows and columns.

reindex method Conform one or more axes to new indexes.

xs method Select single row or column as a Series by label.

icol, irow methods Select single column or row, respectively, as a Series by integer location.

get_value, set_value methods Select single value by row and column label.

Arithmetic and data alignment
One of the most important pandas features is the behavior of arithmetic between ob-
jects with different indexes. When adding together objects, if any index pairs are not
the same, the respective index in the result will be the union of the index pairs. Let’s
look at a simple example:

In [126]: s1 = Series([7.3, -2.5, 3.4, 1.5], index=['a', 'c', 'd', 'e'])

In [127]: s2 = Series([-2.1, 3.6, -1.5, 4, 3.1], index=['a', 'c', 'e', 'f', 'g'])

In [128]: s1        In [129]: s2
Out[128]:           Out[129]:   
a    7.3            a   -2.1    
c   -2.5            c    3.6    
d    3.4            e   -1.5    

128 | Chapter 5:ಗGetting Started with pandas

e    1.5            f    4.0    
                    g    3.1

Adding these together yields:

In [130]: s1 + s2
Out[130]: 
a    5.2
c    1.1
d    NaN
e    0.0
f    NaN
g    NaN

The internal data alignment introduces NA values in the indices that don’t overlap.
Missing values propagate in arithmetic computations.

In the case of DataFrame, alignment is performed on both the rows and the columns:

In [131]: df1 = DataFrame(np.arange(9.).reshape((3, 3)), columns=list('bcd'),
   .....:                 index=['Ohio', 'Texas', 'Colorado'])

In [132]: df2 = DataFrame(np.arange(12.).reshape((4, 3)), columns=list('bde'),
   .....:                 index=['Utah', 'Ohio', 'Texas', 'Oregon'])

In [133]: df1            In [134]: df2    
Out[133]:                Out[134]:        
          b  c  d                b   d   e
Ohio      0  1  2        Utah    0   1   2
Texas     3  4  5        Ohio    3   4   5
Colorado  6  7  8        Texas   6   7   8
                         Oregon  9  10  11

Adding these together returns a DataFrame whose index and columns are the unions
of the ones in each DataFrame:

In [135]: df1 + df2
Out[135]: 
           b   c   d   e
Colorado NaN NaN NaN NaN
Ohio       3 NaN   6 NaN
Oregon   NaN NaN NaN NaN
Texas      9 NaN  12 NaN
Utah     NaN NaN NaN NaN

Arithmetic methods with fill values
In arithmetic operations between differently-indexed objects, you might want to fill
with a special value, like 0, when an axis label is found in one object but not the other:

In [136]: df1 = DataFrame(np.arange(12.).reshape((3, 4)), columns=list('abcd'))

In [137]: df2 = DataFrame(np.arange(20.).reshape((4, 5)), columns=list('abcde'))

In [138]: df1          In [139]: df2        
Out[138]:              Out[139]:            
   a  b   c   d            a   b   c   d   e
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e    1.5            f    4.0    
                    g    3.1

Adding these together yields:

In [130]: s1 + s2
Out[130]: 
a    5.2
c    1.1
d    NaN
e    0.0
f    NaN
g    NaN

The internal data alignment introduces NA values in the indices that don’t overlap.
Missing values propagate in arithmetic computations.

In the case of DataFrame, alignment is performed on both the rows and the columns:

In [131]: df1 = DataFrame(np.arange(9.).reshape((3, 3)), columns=list('bcd'),
   .....:                 index=['Ohio', 'Texas', 'Colorado'])

In [132]: df2 = DataFrame(np.arange(12.).reshape((4, 3)), columns=list('bde'),
   .....:                 index=['Utah', 'Ohio', 'Texas', 'Oregon'])

In [133]: df1            In [134]: df2    
Out[133]:                Out[134]:        
          b  c  d                b   d   e
Ohio      0  1  2        Utah    0   1   2
Texas     3  4  5        Ohio    3   4   5
Colorado  6  7  8        Texas   6   7   8
                         Oregon  9  10  11

Adding these together returns a DataFrame whose index and columns are the unions
of the ones in each DataFrame:

In [135]: df1 + df2
Out[135]: 
           b   c   d   e
Colorado NaN NaN NaN NaN
Ohio       3 NaN   6 NaN
Oregon   NaN NaN NaN NaN
Texas      9 NaN  12 NaN
Utah     NaN NaN NaN NaN

Arithmetic methods with fill values
In arithmetic operations between differently-indexed objects, you might want to fill
with a special value, like 0, when an axis label is found in one object but not the other:

In [136]: df1 = DataFrame(np.arange(12.).reshape((3, 4)), columns=list('abcd'))

In [137]: df2 = DataFrame(np.arange(20.).reshape((4, 5)), columns=list('abcde'))

In [138]: df1          In [139]: df2        
Out[138]:              Out[139]:            
   a  b   c   d            a   b   c   d   e

Essential Functionality | 129



FUNCTION APPLICATION AND 
MAPPING

33

Out[155]:            Out[156]:        
        b   d   e    Utah       1     
Utah    0   1   2    Ohio       4     
Ohio    3   4   5    Texas      7     
Texas   6   7   8    Oregon    10     
Oregon  9  10  11    Name: d          
                                      
In [157]: frame.sub(series3, axis=0)
Out[157]: 
        b  d  e
Utah   -1  0  1
Ohio   -1  0  1
Texas  -1  0  1
Oregon -1  0  1

The axis number that you pass is the axis to match on. In this case we mean to match
on the DataFrame’s row index and broadcast across.

Function application and mapping
NumPy ufuncs (element-wise array methods) work fine with pandas objects:

In [158]: frame = DataFrame(np.random.randn(4, 3), columns=list('bde'),
   .....:                   index=['Utah', 'Ohio', 'Texas', 'Oregon'])

In [159]: frame                           In [160]: np.abs(frame)             
Out[159]:                                 Out[160]:                           
               b         d         e                     b         d         e
Utah   -0.204708  0.478943 -0.519439      Utah    0.204708  0.478943  0.519439
Ohio   -0.555730  1.965781  1.393406      Ohio    0.555730  1.965781  1.393406
Texas   0.092908  0.281746  0.769023      Texas   0.092908  0.281746  0.769023
Oregon  1.246435  1.007189 -1.296221      Oregon  1.246435  1.007189  1.296221

Another frequent operation is applying a function on 1D arrays to each column or row.
DataFrame’s apply method does exactly this:

In [161]: f = lambda x: x.max() - x.min()

In [162]: frame.apply(f)        In [163]: frame.apply(f, axis=1)
Out[162]:                       Out[163]:                       
b    1.802165                   Utah      0.998382              
d    1.684034                   Ohio      2.521511              
e    2.689627                   Texas     0.676115              
                                Oregon    2.542656

Many of the most common array statistics (like sum and mean) are DataFrame methods,
so using apply is not necessary.

The function passed to apply need not return a scalar value, it can also return a Series
with multiple values:

In [164]: def f(x):
   .....:     return Series([x.min(), x.max()], index=['min', 'max'])

In [165]: frame.apply(f)
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Out[155]:            Out[156]:        
        b   d   e    Utah       1     
Utah    0   1   2    Ohio       4     
Ohio    3   4   5    Texas      7     
Texas   6   7   8    Oregon    10     
Oregon  9  10  11    Name: d          
                                      
In [157]: frame.sub(series3, axis=0)
Out[157]: 
        b  d  e
Utah   -1  0  1
Ohio   -1  0  1
Texas  -1  0  1
Oregon -1  0  1

The axis number that you pass is the axis to match on. In this case we mean to match
on the DataFrame’s row index and broadcast across.

Function application and mapping
NumPy ufuncs (element-wise array methods) work fine with pandas objects:

In [158]: frame = DataFrame(np.random.randn(4, 3), columns=list('bde'),
   .....:                   index=['Utah', 'Ohio', 'Texas', 'Oregon'])

In [159]: frame                           In [160]: np.abs(frame)             
Out[159]:                                 Out[160]:                           
               b         d         e                     b         d         e
Utah   -0.204708  0.478943 -0.519439      Utah    0.204708  0.478943  0.519439
Ohio   -0.555730  1.965781  1.393406      Ohio    0.555730  1.965781  1.393406
Texas   0.092908  0.281746  0.769023      Texas   0.092908  0.281746  0.769023
Oregon  1.246435  1.007189 -1.296221      Oregon  1.246435  1.007189  1.296221

Another frequent operation is applying a function on 1D arrays to each column or row.
DataFrame’s apply method does exactly this:

In [161]: f = lambda x: x.max() - x.min()

In [162]: frame.apply(f)        In [163]: frame.apply(f, axis=1)
Out[162]:                       Out[163]:                       
b    1.802165                   Utah      0.998382              
d    1.684034                   Ohio      2.521511              
e    2.689627                   Texas     0.676115              
                                Oregon    2.542656

Many of the most common array statistics (like sum and mean) are DataFrame methods,
so using apply is not necessary.

The function passed to apply need not return a scalar value, it can also return a Series
with multiple values:

In [164]: def f(x):
   .....:     return Series([x.min(), x.max()], index=['min', 'max'])

In [165]: frame.apply(f)
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SORTING AND RANKING

Out[165]: 
            b         d         e
min -0.555730  0.281746 -1.296221
max  1.246435  1.965781  1.393406

Element-wise Python functions can be used, too. Suppose you wanted to compute a
formatted string from each floating point value in frame. You can do this with applymap:

In [166]: format = lambda x: '%.2f' % x

In [167]: frame.applymap(format)
Out[167]: 
            b     d      e
Utah    -0.20  0.48  -0.52
Ohio    -0.56  1.97   1.39
Texas    0.09  0.28   0.77
Oregon   1.25  1.01  -1.30

The reason for the name applymap is that Series has a map method for applying an ele-
ment-wise function:

In [168]: frame['e'].map(format)
Out[168]: 
Utah      -0.52
Ohio       1.39
Texas      0.77
Oregon    -1.30
Name: e

Sorting and ranking
Sorting a data set by some criterion is another important built-in operation. To sort
lexicographically by row or column index, use the sort_index method, which returns
a new, sorted object:

In [169]: obj = Series(range(4), index=['d', 'a', 'b', 'c'])

In [170]: obj.sort_index()
Out[170]: 
a    1
b    2
c    3
d    0

With a DataFrame, you can sort by index on either axis:

In [171]: frame = DataFrame(np.arange(8).reshape((2, 4)), index=['three', 'one'],
   .....:                   columns=['d', 'a', 'b', 'c'])

In [172]: frame.sort_index()        In [173]: frame.sort_index(axis=1)
Out[172]:                           Out[173]:                         
       d  a  b  c                          a  b  c  d                 
one    4  5  6  7                   three  1  2  3  0                 
three  0  1  2  3                   one    5  6  7  4
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Ranking is closely related to sorting, assigning ranks from one through the number of
valid data points in an array. It is similar to the indirect sort indices produced by 
numpy.argsort, except that ties are broken according to a rule. The rank methods for
Series and DataFrame are the place to look; by default rank breaks ties by assigning
each group the mean rank:

In [183]: obj = Series([7, -5, 7, 4, 2, 0, 4])

In [184]: obj.rank()
Out[184]: 
0    6.5
1    1.0
2    6.5
3    4.5
4    3.0
5    2.0
6    4.5

Ranks can also be assigned according to the order they’re observed in the data:

In [185]: obj.rank(method='first')
Out[185]: 
0    6
1    1
2    7
3    4
4    3
5    2
6    5

Naturally, you can rank in descending order, too:

In [186]: obj.rank(ascending=False, method='max')
Out[186]: 
0    2
1    7
2    2
3    4
4    5
5    6
6    4

See Table 5-8 for a list of tie-breaking methods available. DataFrame can compute ranks
over the rows or the columns:

In [187]: frame = DataFrame({'b': [4.3, 7, -3, 2], 'a': [0, 1, 0, 1],
   .....:                    'c': [-2, 5, 8, -2.5]})

In [188]: frame        In [189]: frame.rank(axis=1)
Out[188]:              Out[189]:                   
   a    b    c            a  b  c                  
0  0  4.3 -2.0         0  2  3  1                  
1  1  7.0  5.0         1  1  3  2                  
2  0 -3.0  8.0         2  2  1  3                  
3  1  2.0 -2.5         3  2  3  1
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DESCRIPTIVE AND SUMMARY 
STATISTICS Table 5-10. Descriptive and summary statistics

Method Description

count Number of non-NA values

describe Compute set of summary statistics for Series or each DataFrame column

min, max Compute minimum and maximum values

argmin, argmax Compute index locations (integers) at which minimum or maximum value obtained, respectively

idxmin, idxmax Compute index values at which minimum or maximum value obtained, respectively

quantile Compute sample quantile ranging from 0 to 1

sum Sum of values

mean Mean of values

median Arithmetic median (50% quantile) of values

mad Mean absolute deviation from mean value

var Sample variance of values

std Sample standard deviation of values

skew Sample skewness (3rd moment) of values

kurt Sample kurtosis (4th moment) of values

cumsum Cumulative sum of values

cummin, cummax Cumulative minimum or maximum of values, respectively

cumprod Cumulative product of values

diff Compute 1st arithmetic difference (useful for time series)

pct_change Compute percent changes

Correlation and Covariance
Some summary statistics, like correlation and covariance, are computed from pairs of
arguments. Let’s consider some DataFrames of stock prices and volumes obtained from
Yahoo! Finance:

import pandas.io.data as web

all_data = {}
for ticker in ['AAPL', 'IBM', 'MSFT', 'GOOG']:
    all_data[ticker] = web.get_data_yahoo(ticker, '1/1/2000', '1/1/2010')

price = DataFrame({tic: data['Adj Close']
                   for tic, data in all_data.iteritems()})
volume = DataFrame({tic: data['Volume']
                    for tic, data in all_data.iteritems()})

I now compute percent changes of the prices:

In [209]: returns = price.pct_change()

In [210]: returns.tail()

Summarizing and Computing Descriptive Statistics | 139
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CREATING DATAFRAMES
Directly from Dict or Series
From a Comma-Separated File – CSV file

• pandas.read_csv()
• Can infer headers/column names if present, otherwise may want to reindex

From an Excel File
• pandas.read_excel()

From a Database using SQL (see the reading for an example)
From Clipboard, URL, Google Analytics, …

…
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MORE…
Unique values, Value counts
Correlation and Covariance
Functions for handling missing data – in a few classes

• dropna(), fillna()
Broadcasting
Pivoting

We will see some of these as we discuss data wrangling, cleaning, etc.
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CONTINUING TO TIDY DATA …
1. NumPy: Python Library for Manipulating nD Arrays

Multidimensional Arrays, and a variety of operations including Linear Algebra

2. Pandas: Python Library for Manipulating Tabular Data, & Tidy Data 
Series, Tables (also called DataFrames)
Many operations to manipulate and combine tables/series

3. Relational Databases
Tables/Relations, and SQL (similar to Pandas operations)

4.    Apache Spark
Sets of objects or key-value pairs 
MapReduce and SQL-like operations
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TABLES 

39

ID age wgt_kg hgt_cm

1 12.2 42.3 145.1

2 11.0 40.8 143.8

3 15.6 65.3 165.3

4 35.1 84.2 185.8

Observations,
Rows, or 

Tuples

Variables
(also called Attributes, or 

Columns, or Labels)Index

But also:
• Names of files/DataFrames = description of one dataset
• Enforce one data type per dataset (ish)



EXAMPLE
Identifier Variable: measure or attribute:
• age, weight, height, sex

Value: measurement of attribute:
• 12.2, 42.3kg, 145.1cm, M/F

Observation: all measurements for an object
• A specific person is [12.2, 42.3, 145.1, F]

40



TIDYING DATA I

41

Name Treatment A Treatment B
John Smith - 2
Jane Doe 16 11
Mary Johnson 3 1

Thanks to http://jeannicholashould.com/tidy-data-in-python.html

?????????????

Name Treatment A Treatment B Treatment C Treatment D
John Smith - 2 - -
Jane Doe 16 11 4 1
Mary Johnson 3 1 - 2

?????????????



TIDYING DATA II
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Name Treatment Result
John Smith A -
John Smith B 2
John Smith C -
John Smith D -
Jane Doe A 16
Jane Doe B 11
Jane Doe C 4
Jane Doe D 1
Mary Johnson A 3
Mary Johnson B 1
Mary Johnson C -
Mary Johnson D 2

In a few 
lectures …



MELTING DATA
What we just did was “unpivot” the dataframe from wide to long format.
Pandas: Melt (https://pandas.pydata.org/docs/reference/api/pandas.melt.html)
This function is useful to massage a DataFrame into a format where: 

• One or more columns are identifier variables (id_vars), 
• All other columns, considered measured variables (value_vars), are “unpivoted” to 

the row axis, leaving just two non-identifier columns, ‘variable’ and ‘value’.

Name Treatment Result
John Smith A -
John Smith B 2
John Smith C -
John Smith D -
Jane Doe A 16
Jane Doe B 11
Jane Doe C 4
Jane Doe D 1
Mary Johnson A 3
Mary Johnson B 1
Mary Johnson C -
Mary Johnson D 2

Name Treatment A Treatment B Treatment C Treatment D
John Smith - 2 - -
Jane Doe 16 11 4 1
Mary Johnson 3 1 - 2

[NM]
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MELTING DATA I

44

religion <$10k $10-20k $20-30k $30-40k $40-50k $50-75k

Agnostic 27 34 60 81 76 137

Atheist 12 27 37 52 35 70

Buddhist 27 21 30 34 33 58

Catholic 418 617 732 670 638 1116

Dont 
know/refused 15 14 15 11 10 35

Evangelical Prot 575 869 1064 982 881 1486

Hindu 1 9 7 9 11 34

Historically 
Black Prot 228 244 236 238 197 223

Jehovahs 
Witness 20 27 24 24 21 30

Jewish 19 19 25 25 30 95

?????????????
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f_df = pd.melt(df,
["religion"],
var_name="income",
value_name="freq")

f_df = f_df.sort_values(by=["religion"])
f_df.head(10)

religion income freq
Agnostic <$10k 27

Agnostic $30-40k 81

Agnostic $40-50k 76

Agnostic $50-75k 137

Agnostic $10-20k 34

Agnostic $20-30k 60

Atheist $40-50k 35

Atheist $20-30k 37

Atheist $10-20k 27

Atheist $30-40k 52

MELTING DATA II



MORE COMPLICATED 
EXAMPLE
Billboard Top 100 data for songs, covering their position on the Top 100 for 75 
weeks, with two “messy” bits:
• Column headers for each of the 75 weeks

• If a song didn’t last 75 weeks, those columns have are null

46

year artist.in
verted track time genre date.ente

red
date.pea
ked

x1st.wee
k

x2nd.we
ek ...

2000 Destiny's 
Child

Independent 
Women Part I 3:38 Rock 2000-09-

23
2000-11-
18 78 63.0 ...

2000 Santana Maria, Maria 4:18 Rock 2000-02-
12

2000-04-
08 15 8.0 ...

2000 Savage 
Garden

I Knew I Loved 
You 4:07 Rock 1999-10-

23
2000-01-
29 71 48.0 ...

2000 Madonn
a Music 3:45 Rock 2000-08-

12
2000-09-
16 41 23.0 ...

2000 Aguilera, 
Christina

Come On Over 
Baby 3:38 Rock 2000-08-

05
2000-10-
14 57 47.0 ...

2000 Janet Doesn't Really 
Matter 4:17 Rock 2000-06-

17
2000-08-
26 59 52.0 ...

Messy columns!

Thanks to http://jeannicholashould.com/tidy-data-in-python.html



MORE COMPLICATED 
EXAMPLE

Creates one row per week, per record, with its rank
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# Keep identifier variables
id_vars = ["year",

"artist.inverted",
"track",
"time",
"genre",
"date.entered",
"date.peaked"]

# Melt the rest into week and rank columns
df = pd.melt(frame=df,

id_vars=id_vars,
var_name="week",
value_name="rank")



MORE COMPLICATED 
EXAMPLE

48

# Formatting
df["week"] = df['week'].str.extract('(\d+)’,

expand=False).astype(int)
df["rank"] = df["rank"].astype(int)

# Cleaning out unnecessary rows
df = df.dropna()

# Create "date" columns
df['date'] = pd.to_datetime(

df['date.entered']) +
pd.to_timedelta(df['week'], unit='w') –
pd.DateOffset(weeks=1) 

[…, “x2nd.week”, 63.0] à […, 2, 63]



MORE COMPLICATED 
EXAMPLE

49

# Ignore now-redundant, messy columns
df = df[["year",

"artist.inverted",
"track",
"time",
"genre",
"week",
"rank",
"date"]]

df = df.sort_values(ascending=True,
by=["year","artist.inverted","track","week","rank"])

# Keep tidy dataset for future usage
billboard = df

df.head(10)



MORE COMPLICATED 
EXAMPLE

50

year artist.in
verted track time genre week rank date

2000 2 Pac Baby Don't Cry (Keep Ya Head Up II) 4:22 Rap 1 87 2000-02-26

2000 2 Pac Baby Don't Cry (Keep Ya Head Up II) 4:22 Rap 2 82 2000-03-04

2000 2 Pac Baby Don't Cry (Keep Ya Head Up II) 4:22 Rap 3 72 2000-03-11

2000 2 Pac Baby Don't Cry (Keep Ya Head Up II) 4:22 Rap 4 77 2000-03-18

2000 2 Pac Baby Don't Cry (Keep Ya Head Up II) 4:22 Rap 5 87 2000-03-25

2000 2 Pac Baby Don't Cry (Keep Ya Head Up II) 4:22 Rap 6 94 2000-04-01

2000 2 Pac Baby Don't Cry (Keep Ya Head Up II) 4:22 Rap 7 99 2000-04-08

2000 2Ge+her The Hardest Part Of Breaking Up (Is 
Getting Ba... 3:15 R&B 1 91 2000-09-02

2000 2Ge+her The Hardest Part Of Breaking Up (Is 
Getting Ba... 3:15 R&B 2 87 2000-09-09

2000 2Ge+her The Hardest Part Of Breaking Up (Is 
Getting Ba... 3:15 R&B 3 92 2000-09-16

?????????????



ON WE GO!  TO RELATIONAL 
DATABASES & SQL!
1. NumPy: Python Library for Manipulating nD Arrays

Multidimensional Arrays, and a variety of operations including Linear Algebra

2. Pandas: Python Library for Manipulating Tabular Data, & Tidy Data
Series, Tables (also called DataFrames)
Many operations to manipulate and combine tables/series

3. Relational Databases
Tables/Relations, and SQL (similar to Pandas operations)

4.    Apache Spark
Sets of objects or key-value pairs 
MapReduce and SQL-like operations
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TODAY’S LECTURE
Relational data:
• What is a relation, and how do they interact?

Querying databases:
• SQL

• SQLite
• How does this relate to pandas?

Joins

53

Thanks to Zico Kolter for some structure for this lecture!



RELATION
Simplest relation: a table aka tabular data full of unique tuples

54

ID age wgt_kg hgt_cm

1 12.2 42.3 145.1

2 11.0 40.8 143.8

3 15.6 65.3 165.3

4 35.1 84.2 185.8

Labels

Observations
(called tuples)

Variables
(called attributes)



WHERE DOES THIS BREAK 
DOWN?
What’s wrong with our last 
example???

• Lots of duplicated data
What happens if we add 
years?

• Need to be able to have 
different units of observation 
or different views!

What do we need?
• Different tables to store 

different kinds of 
observations!

year artist.in
verted track time genre week rank date

2000 2 Pac Baby Don't Cry (Keep Ya Head Up II) 4:22 Rap 1 87 2000-02-26 

2000 2 Pac Baby Don't Cry (Keep Ya Head Up II) 4:22 Rap 2 82 2000-03-04 

2000 2 Pac Baby Don't Cry (Keep Ya Head Up II) 4:22 Rap 3 72 2000-03-11 

2000 2 Pac Baby Don't Cry (Keep Ya Head Up II) 4:22 Rap 4 77 2000-03-18 

2000 2 Pac Baby Don't Cry (Keep Ya Head Up II) 4:22 Rap 5 87 2000-03-25 

2000 2 Pac Baby Don't Cry (Keep Ya Head Up II) 4:22 Rap 6 94 2000-04-01 

2000 2 Pac Baby Don't Cry (Keep Ya Head Up II) 4:22 Rap 7 99 2000-04-08 

2000 2Ge+her
The Hardest Part Of Breaking Up (Is 

Getting Ba...
3:15 R&B 1 91 2000-09-02 

2000 2Ge+her
The Hardest Part Of Breaking Up (Is 

Getting Ba...
3:15 R&B 2 87 2000-09-09 

2000 2Ge+her
The Hardest Part Of Breaking Up (Is 

Getting Ba...
3:15 R&B 3 92 2000-09-16 
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PRIMARY KEYS

The primary key is a unique identifier for every tuple in a relation
• Each tuple has exactly one primary key

56

ID age wgt_kg hgt_cm nat_id

1 12.2 42.3 145.1 1

2 11.0 40.8 143.8 1

3 15.6 65.3 165.3 2

4 35.1 84.2 185.8 1

5 18.1 62.2 176.2 3

6 19.6 82.1 180.1 1

ID Nationality
1 USA
2 Canada
3 Mexico



AREN’T THESE CALLED 
“INDEXES”?
Yes, in Pandas; but not in the database world

For most databases, an “index” is a data structure used to speed up retrieval of 
specific tuples

For example, to find all tuples with nat_id = 2:
• We can either scan the table – O(N)
• Or use an “index” (e.g., binary tree) – O(log N)

57



FOREIGN KEYS

Foreign keys are attributes (columns) that point to a different table’s primary key
• A table can have multiple foreign keys
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ID age wgt_kg hgt_cm nat_id

1 12.2 42.3 145.1 1

2 11.0 40.8 143.8 1

3 15.6 65.3 165.3 2

4 35.1 84.2 185.8 1

5 18.1 62.2 176.2 3

6 19.6 82.1 180.1 1

ID Nationality
1 USA
2 Canada
3 Mexico



RELATION SCHEMA
A list of all the attribute names, and their domains
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create table instructor (
ID char(5),
name   varchar(20) not null,
dept_name varchar(20),
salary numeric(8,2),
primary key (ID),
foreign key (dept_name) references department

)

create table department
(dept_name varchar(20),
building varchar(15),
budget numeric(12,2) check (budget > 0),
primary key (dept_name)
);

SQL Statements 
To create Tables



SCHEMA DIAGRAMS

60



SEARCHING FOR ELEMENTS
Find all people with nationality Canada (nat_id = 2):

??????????????? 
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ID age wgt_kg hgt_cm nat_id

1 12.2 42.3 145.1 1

2 11.0 40.8 143.8 1

3 15.6 65.3 165.3 2

4 35.1 84.2 185.8 1

5 18.1 62.2 176.2 3

6 19.6 82.1 180.1 1

O(n)



INDEXES
Like a hidden sorted map of references to a specific attribute (column) in a table; 
allows O(log n) lookup instead of O(n)
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loc ID age wgt_kg hgt_cm nat_id

0 1 12.2 42.3 145.1 1

128 2 11.0 40.8 143.8 2

256 3 15.6 65.3 165.3 2

384 4 35.1 84.2 185.8 1

512 5 18.1 62.2 176.2 3

640 6 19.6 82.1 180.1 1

nat_id locs
1 0, 384,

640
2 128, 256
3 512



INDEXES
Actually implemented with data structures like B-trees
• (Take courses like CMSC424 or CMSC420)

But: indexes are not free
• Takes memory to store

• Takes time to build
• Takes time to update (add/delete a row, update the column)

But, but: one index is (mostly) free
• Index will be built automatically on the primary key

Think before you build/maintain an index on other attributes!
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RELATIONSHIPS
Primary keys and foreign keys define interactions between different tables aka 
entities.  Four types:
• One-to-one

• One-to-one-or-none

• One-to-many and many-to-one 

• Many-to-many

Connects (one, many) of the rows in one table to (one, many) of the rows in 
another table

64



ONE-TO-MANY & MANY-TO-
ONE
One person can have one nationality in this example, but one nationality can 
include many people.
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ID age wgt_kg hgt_cm nat_id

1 12.2 42.3 145.1 1

2 11.0 40.8 143.8 1

3 15.6 65.3 165.3 2

4 35.1 84.2 185.8 1

5 18.1 62.2 176.2 3

6 19.6 82.1 180.1 1

ID Nationality
1 USA
2 Canada
3 Mexico

Person Nationality



ONE-TO-ONE
Two tables have a one-to-one relationship if every tuple in the first tables 
corresponds to exactly one entry in the other

In general, you won’t be using these (why not just merge the rows into one table?) 
unless:
• Split a big row between SSD and HDD or distributed
• Restrict access to part of a row (some DBMSs allow column-level access control, but 

not all)

• Caching, partitioning, & serious stuff: take CMSC424
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Person SSN



ONE-TO-ONE-OR-NONE
Say we want to keep track of people’s cats:

People with IDs 2 and 3 do not own cats*, and are not in the table.  Each person 
has at most one entry in the table.

Is this data tidy?
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Person ID Cat1 Cat2
1 Chairman Meow Fuzz Aldrin
4 Anderson Pooper Meowly Cyrus
5 Gigabyte Megabyte

Person Cat

*nor do they have hearts, apparently.



MANY-TO-MANY
Say we want to keep track of people’s cats’ colorings:

One column per color, too many columns, too many nulls
Each cat can have many colors, and each color many cats 
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ID Name
1 Megabyte
2 Meowly Cyrus
3 Fuzz Aldrin
4 Chairman Meow
5 Anderson Pooper
6 Gigabyte

Cat ID Color ID Amount
1 1 50
1 2 50
2 2 20
2 4 40
2 5 40
3 1 100

Cat Color



ASSOCIATIVE TABLES

Used to model pure relationships (as opposed to discrete entities)
Primary key  ???????????
• [Cat ID, Color ID] (+ [Color ID, Cat ID], case-dependent)

Foreign key(s)   ???????????
• Cat ID and Color ID 69

Cat ID Color ID Amount
1 1 50
1 2 50
2 2 20
2 4 40
2 5 40
3 1 100

ID Name

1 Megabyte

2 Meowly Cyrus

3 Fuzz Aldrin

4 Chairman Meow

5 Anderson Pooper

6 Gigabyte

ID Name

1 Black

2 Brown

3 White

4 Orange

5 Neon Green

6 Invisible

Cats Colors



ASIDE: PANDAS
So, this kinda feels like pandas …
• And pandas kinda feels like a relational data system …

Pandas is not strictly a relational data system:
• No notion of primary / foreign keys

It does have indexes (and multi-column indexes):
• pandas.Index: ordered, sliceable set storing axis labels

• pandas.MultiIndex: hierarchical index

Rule of thumb: do heavy, rough lifting at the relational DB level, then fine-grained 
slicing and dicing and viz with pandas
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SQLITE
On-disk relational database management system (RDMS)
• Applications connect directly to a file

Most RDMSs have applications connect to a server:
• Advantages include greater concurrency, less restrictive locking

• Disadvantages include, for this class, setup time J
Installation:
• conda install -c anaconda sqlite

• (Included in Docker container & Jupyter install; need install for raw Python)

All interactions use Structured Query Language (SQL)
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HOW A RELATIONAL DB FITS 
INTO YOUR WORKFLOW

72

SQLite CLI & GUI 
Frontend

SQLite FilePython

Raw Input

Structured output 
(trained classifiers, 

JSON for D3, 
visualizations)

SQL

SQ
L

Persists!

Persists!



CRASH COURSE IN SQL (IN 
PYTHON)

Cursor: temporary work area in system memory for manipulating SQL statements 
and return values
If you do not close the connection (conn.close()), any outstanding transaction 
is rolled back
• (More on this in a bit.)
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import sqlite3

# Create a database and connect to it
conn = sqlite3.connect(“cmsc320.db”)
cursor = conn.cursor()

# do cool stuff
conn.close()



CRASH COURSE IN SQL (IN 
PYTHON)

Capitalization doesn’t matter for SQL reserved words
• SELECT = select = SeLeCt
Rule of thumb: capitalize keywords for readability
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# Make a table
cursor.execute(“””
CREATE TABLE cats (

id INTEGER PRIMARY KEY,
name TEXT

)”””)

?????????

id name
cats



CRASH COURSE IN SQL (IN 
PYTHON)
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# Insert into the table
cursor.execute(“INSERT INTO cats VALUE (1, ’Megabyte’)”)
cursor.execute(“INSERT INTO cats VALUE (2, ‘Meowly Cyrus’)”)
cursor.execute(“INSERT INTO cats VALUE (3, ‘Fuzz Aldrin’)”)
conn.commit()

id name
1 Megabyte
2 Meowly Cyrus
3 Fuzz Aldrin

# Delete row(s) from the table
cursor.execute(“DELETE FROM cats WHERE id == 2”);
conn.commit()

id name
1 Megabyte
3 Fuzz Aldrin



CRASH COURSE IN SQL (IN 
PYTHON)

index_col=“id”: treat column with label “id” as an index
index_col=1: treat column #1 (i.e., “name”) as an index
(Can also do multi-indexing.)
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# Read all rows from a table
for row in cursor.execute(”SELECT * FROM cats”):

print(row)

# Read all rows into pandas DataFrame
pd.read_sql_query(“SELECT * FROM cats”, conn, index_col=”id”)

id name
1 Megabyte
3 Fuzz Aldrin



JOINING DATA
A join operation merges two or more tables into a single relation.  Different ways 
of doing this:
• Inner
• Left
• Right
• Full Outer

Join operations are done on columns that explicitly link the tables together
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GOOGLE IMAGE SEARCH ONE 
SLIDE SQL JOIN VISUAL
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Image credit: http://www.dofactory.com/sql/join



INNER JOINS

Inner join returns merged rows that share the same value in the column they are 
being joined on (id and cat_id).
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id name
1 Megabyte
2 Meowly Cyrus
3 Fuzz Aldrin
4 Chairman Meow
5 Anderson Pooper
6 Gigabyte

cat_id last_visit
1 02-16-2017
2 02-14-2017
5 02-03-2017

cats

visits

id name last_visit
1 Megabyte 02-16-2017
2 Meowly Cyrus 02-14-2017
5 Anderson Pooper 02-03-2017



INNER JOINS
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# Inner join in pandas
df_cats = pd.read_sql_query(“SELECT * from cats”, conn)
df_visits = pd.read_sql_query(“SELECT * from visits”, conn)
df_cats.merge(df_visits, how = “inner”, 

left_on = “id”, right_on = ”cat_id”)

# Inner join in SQL / SQLite via Python
cursor.execute(“””

SELECT 
*

FROM 
cats, visits

WHERE
cats.id == visits.cat_id

”””)



LEFT JOINS
Inner joins are the most common type of joins (get results that appear in both
tables)
Left joins: all the results from the left table, only some matching results from the 
right table
Left join (cats, visits) on (id, cat_id)  ???????????
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id name last_visit
1 Megabyte 02-16-2017
2 Meowly Cyrus 02-14-2017
3 Fuzz Aldrin NULL
4 Chairman Meow NULL
5 Anderson Pooper 02-03-2017
6 Gigabyte NULL



RIGHT JOINS
Take a guess!
Right join

(cats, visits)
on

(id, cat_id)
???????????
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id name
1 Megabyte
2 Meowly Cyrus
3 Fuzz Aldrin
4 Chairman Meow
5 Anderson Pooper
6 Gigabyte

cat_id last_visit
1 02-16-2017
2 02-14-2017
5 02-03-2017
7 02-19-2017
12 02-21-2017

cats

visits

id name last_visit
1 Megabyte 02-16-2017
2 Meowly Cyrus 02-14-2017
5 Anderson Pooper 02-03-2017
7 NULL 02-19-2017
12 NULL 02-21-2017



LEFT/RIGHT JOINS

83

# Left join in pandas
df_cats.merge(df_visits, how = “left”, 

left_on = “id”, right_on = ”cat_id”)

# Right join in pandas
df_cats.merge(df_visits, how = “right”, 

left_on = “id”, right_on = ”cat_id”)

# Left join in SQL / SQLite via Python
cursor.execute(“SELECT * FROM cats LEFT JOIN visits ON

cats.id == visits.cat_id”)

# Right join in SQL / SQLite via Python
L



FULL OUTER JOIN
Combines the left and the right join          ???????????
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id name last_visit
1 Megabyte 02-16-2017
2 Meowly Cyrus 02-14-2017
3 Fuzz Aldrin NULL
4 Chairman Meow NULL
5 Anderson Pooper 02-03-2017
6 Gigabyte NULL
7 NULL 02-19-2017
12 NULL 02-21-2017

# Outer join in pandas
df_cats.merge(df_visits, how = “outer”, 

left_on = “id”, right_on = ”cat_id”)



GROUP BY AGGREGATES
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ID age wgt_kg hgt_cm nat_id

1 12.2 42.3 145.1 1

2 11.0 40.8 143.8 1

3 15.6 65.3 165.3 2

4 35.1 84.2 185.8 1

5 18.1 62.2 176.2 3

6 19.6 82.1 180.1 1

SELECT nat_id, AVG(age) as average_age
FROM persons GROUP BY nat_id

nat_id average_
age

1 19.48

2 15.6

3 18.1



RAW SQL IN PANDAS
If you “think in SQL” already, you’ll be fine with pandas:
• conda install -c anaconda pandasql

• Info: http://pandas.pydata.org/pandas-docs/stable/comparison_with_sql.html
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# Write the query text
q = ”””

SELECT
*

FROM
cats

LIMIT 10;”””

# Store in a DataFrame
df = sqldf(q, locals())



THE DATA LIFECYCLE
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Data 
collection

Data 
processing

Exploratory 
analysis

&
Data viz

Analysis, 
hypothesis 
testing, & 

ML

Insight & 
Policy 

Decision

Motivational teaser – why are we 
talking about this ”data” stuff?



PUTTING THE SCIENCE BACK 
IN DATA SCIENCE
What’s the “Science” part of data sciencce?

• Typically, “Science” is “determining some 
truth about the world….”

Suppose you work for a company that is considering 
a redesign of their website; does their new 
design (design B) offer any statistical advantage 
to their current design (design A)?

In a linear regression, does a certain variable impact the response?
• Does energy consumption depend on whether or not a day is a weekday or weekend?

Both: concerned with making actual statements about the nature of the world.

88[ZK, NM]



RECALL: WHAT IS DATA 
SCIENCE? 

Drawing useful conclusions from data in a principled way. 
Exploration

• Identifying patterns in information
• Uses visualizations, bringing data together

Prediction: Given what I’ve seen, what is the most 
likely value I’ll see in the future? Predictions 
forecast the most likely values of the data 
coming from the data generating process.

• Making informed guesses
• Uses machine learning and optimization 

Inference: How likely is what I observed representative 
of the broader picture? Statistical Inference draws conclusions 
(with confidence) about the structure of the data generating process (population).

• Quantifying whether those patterns are reliable
• Uses randomization

Inference vs Prediction (TBD expanded!): inference = learn about the data generation process, prediction = predict what’s 
coming next

89[NM]



HOW DATA AND MODELS 
INTERACT: EXAMPLE 1 True Model / Population: phenomenon under 

investigation
Data Generating Process / Sample: 
mechanisms that create the data that will be 
recorded (e.g. probabilistic, noisy)

Example: Understand customer satisfaction. 
Sends a text message to all previous 
customers to rate on a scale of 1-5. 
True Model: the true opinion of all customers
Data Generating Process: how and which 
customers responded (satisfaction, mood, 
too busy, don’t care, ignored, etc.)
Data: all replies received and recorded.
Tasks: 

• Predict Reviews from unseen customers 
• Understand product comparison

90

Learned Model

Population
Sample

Machine Learning: 
Prediction/Regression/Classification

Statistical Inference: 
Experiments/Significance Testing/Bootstrapping [NM]



HOW DATA AND MODELS 
INTERACT: EXAMPLE 2

A Model: theory or explanation of the data 
generating process (relationships).
Fit Model: an instance of a model that is 
likely to explain a fixed dataset.
Example: What is the relationship between 
the number of parking tickets and the 
weather?
Data Generating Process: data recorded of  
parking ticket and weather; noisy 
observations!
Model: more parking tickets are issued 
when the weather is temperate (neither hot 
nor cold).
Fit Model: quantitative relationship for a  
dataset: 

• E.g, On data of tickets and weather in 
San Diego, a car is 5x more likely to get 
a ticket when the weather is temperate.

• Model fit on data from Minneapolis might 
specify a different quantity (e.g. 3x) but 
same structure.
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Learned Model

Population
Sample

Machine Learning: 
Prediction/Regression/Classification

Statistical Inference: 
Experiments/Significance Testing/Bootstrapping [NM]



WHAT MAKES A MODEL 
GOOD?
A fit model finds the most likely parameters that explain the 
observed data under the given model. 
These parameters are found by minimizing a loss function –
typically some notion of ‘error’ or ‘cost’.
A model is good if it effectively explains the phenomenon under 
investigation. Two questions:

1. Is the model choice reasonable? Does the structure of the 
model capture the general understanding of how the Data 
Generating Process behaves?

2. Does the fit model describe the data well? How small is the 
error?

(1) is about the applicability of the model to new observations 
(bias).
(2) is about the ability of a model to explain the observed data 
(variance).

• More later on this semester!
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STATISTICAL MODEL: 
INFERENCE
A statistical model is a quantitative relationship between properties 
in observed data.

A statistical model is a function S : X → Rn that measures properties 
of X.

Example: Is there a linear relationship between 
the heights of children and the height of their
biological mother?

• X = mother_height ∈ R
• Y = child_height ∈ R
• S is the correlation coefficient (measure of strength of relationship 

between the relative movement of mother_height and child_height)

Inference results in interpreting properties (e.g., significance) of the 
data generating process from the parameters of the model (e.g.
correlation).
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PREDICTION MODEL: 
REGRESSION
Regression models attempt to predict the most likely 
quantitative value associated to an observation (set of 
input features).

A regressor is a function F: X→R that predicts the value 
y∈R of an observation x∈X.

Example: Given the heights of a child’s parents, 
what is the height of their child?

• X = (father_height, mother_height) ∈ R2

• Y = child_height ∈ R
• F predicts child heights.

Regression results in having a model that we can use to 
predict a numerical value for data that we have not see 
yet.
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PREDICTION MODEL: 
CLASSIFICATION
Classification models attempt to predict the most 
likely class associated to an observation (set of input 
features)

• Class is a nominal attribute (e.g., 1=‘YES’ v 0=‘NO’).
A classifier is a function F: X→Y that predicts whether an 
observation x∈X belongs to a class y∈Y.
Example: Given product purchase attributes (item, price, 
age, state), can one predict whether the person was 
satisfied with their purchase?

• X = (item, price, age, state) ∈ R4

• Y = ‘SATISFIED’,‘NOT SATISFIED’ ∈ {0,1}
• F predicts product satisfaction.

Classification results in a model that we can use to 
predict labels for data we have not seen.
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A SIDE NOTE ON TERMS
For linear regression we want to know the relationship between an outcome, given 
some set/vector of predictors.

If you have a ML background:
• Get target, outcome given predictors/observations

If you have a “stats” background:
• Get endogenous variables given exogenous variables

If you are more of a “math” person:
• Get dependent variable given one or more independent variables
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TEASER I: PUTTING ON OUR 
STATS HAT
Population (Individuals, study subjects, participants)

• European adults 

Treatment: Something (drug, price, web headline) to which a subjects are exposed 
• Chocolate consumption 

Outcome: dependent variable, response, target, output 
• Heart disease 
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TEASER II: PUTTING ON OUR 
STATS HAT
Question: Is there any relation between chocolate
consumption and heart disease? 

• Association: any relation
• Not necessarily causal!  “The rooster does not make the sun rise.”

Data:
• “Among those in the top tier of chocolate consumption, 12 percent 

developed or died of cardiovascular disease during the study, 
compared to 17.4 percent of those who didn’t eat chocolate.” 

• - Howard LeWine of Harvard Health Blog, reported by npr.org
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NOW, TRAVEL BACK TO LONDON IN 
THE 1800S … 99



MIASMAS, MIASMATISM, 
MIASMATISTS
Bad smells given off by waste and rotting matter …
Believed to be the main source of disease (cholera)

Suggested remedies: 
• “fly to clene air”
• “a pocket full o’posies”
• “fire off barrels of gunpowder” 

10
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JO(H)N SNOW, 1813—58
Which one?

• https://en.wikipedia.org/wiki/John_Snow

Big name in epidemiology, 
the study of determinants 

of population-level disease

Big name (Jon, not John) 
in the North, let down by 

some writers  

A public house built at the 
epicenter of a truly virulent 

cholera outbreak circa 1800s

10
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JOHN SNOW’S MAP

Snow’s Map: 
• Black bar represents one death. 
• Multiple deaths at same address à

bars stacked on top of each other
• Black discs mark the locations of water 

pumps. 
• Creates a “natural experiment” 10

2

Some houses served by S&V, which drew water from 
the Thames; otherws by Lambeth, which didn’t



TERMINOLOGY TEASER
Treatment: Something (drug, price, web headline) to which subjects are exposed
Treatment group 

• A group of subjects exposed to a specific treatment

Control group 
• A group of subjects exposed to no (or standard) treatment

Randomization 
• The process of randomly assigning subjects to treatments

Subjects 
• The items (web visitors, patients, etc.) that are exposed to treatments

Test statistic 
• The metric used to measure the effect of the treatment

10
3



QUESTIONS
Treatment Group    ?????????

Control Group    ?????????

Which houses were part of the treatment group?
• All houses in the region of overlap.
• Houses served by S&V (dirty water) 

in the region of overlap.
• Houses served by Lambeth (clean water) 

in the region of overlap?

In the language of stats: 
• S&V houses as the treatment group 
• Lambeth houses at the control group. 
• A crucial element in Snow’s analysis was that the people in the two groups were comparable to each 

other, apart from the treatment.
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JOHN SNOW’S EXPERIMENT
“… there is no difference whatever in the houses or the people receiving 
the supply of the two Water Companies, or in any of the physical 
conditions with which they are surrounded …”

The only difference was in the water supply, “one group being supplied 
with water containing the sewage of London, and amongst it, whatever 
might have come from the cholera patients, the other group having water 
quite free from impurity.”

The map displays a striking revelation—the deaths are roughly clustered 
around the Broad Street pump.

10
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Supply Area Num. of Houses Cholera Deaths Deaths/10k Houses

S & V (Dirty Water) 40,046 1,263 315

Lambeth (Clean Water) 26,107 98 37

Rest of London 256,423 1,422 59



NEXT CLASS:
EXPLORATORY ANALYSIS
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