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ANNOUNCEMENTS
Register on Piazza: piazza.com/umd/fall2021/cmsc320
• XXX have registered already
• Very few have not registered yet

If you were on Piazza, you’d know …
• Project 1 will be out shortly.  (Worth 10% of grade, as are each of the four 

projects.)
• Link will be on course website @ cmsc320.github.io

We’ve also linked some reading for the week!
• Quizzes are generally due on Tuesdays at noon; on ELMS now.
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THE DATA LIFECYCLE
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NEXT FEW CLASSES
1. NumPy: Python Library for Manipulating nD Arrays

Multidimensional Arrays, and a variety of operations including Linear Algebra

2. Pandas: Python Library for Manipulating Tabular Data 
Series, Tables (also called DataFrames)
Many operations to manipulate and combine tables/series

3. Relational Databases
Tables/Relations, and SQL (similar to Pandas operations)

4.    Apache Spark
Sets of objects or key-value pairs 
MapReduce and SQL-like operations
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NUMERIC & SCIENTIFIC 
APPLICATIONS
Number of third-party packages available for numerical and scientific computing
These include: 
• NumPy/SciPy – numerical and scientific function libraries. 

• numba – Python compiler that support JIT compilation.

• ALGLIB – numerical analysis library.
• pandas – high-performance data structures and data analysis tools. 

• pyGSL – Python interface for GNU Scientific Library. 

• ScientificPython – collection of scientific computing modules.
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NUMPY AND FRIENDS
By far, the most commonly used packages are those in the NumPy stack.  These 
packages include: 
• NumPy: similar functionality as Matlab

• SciPy: integrates many other packages like NumPy

• Matplotlib & Seaborn – plotting libraries

• iPython via Jupyter – interactive computing
• Pandas – data analysis library

• SymPy – symbolic computation library
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THE NUMPY STACK
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NUMPY
Among other things, NumPy contains: 
• A powerful n-dimensional array object.

• Sophisticated (broadcasting/universal) functions.

• Tools for integrating C/C++ and Fortran code.

• Useful linear algebra, Fourier transform, and random number capabilities, etc.

Besides its obvious scientific uses, NumPy can also be used as an efficient multi-
dimensional container of generic data. 
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NUMPY
ndarray object: an n-dimensional array of homogeneous data types, with many 
operations being performed in compiled code for performance 
Several important differences between NumPy arrays and the standard Python 
sequences:
• NumPy arrays have a fixed size. Modifying the size means creating a new array. 

• NumPy arrays must be of the same data type, but this can include Python objects –
may not get performance benefits

• More efficient mathematical operations than built-in sequence types. 
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NUMPY DATATYPES
Wider variety of data types than are built-in to the Python language by default. 
Defined by the numpy.dtype class and include:

• intc (same as a C integer) and intp (used for indexing) 

• int8, int16, int32, int64 

• uint8, uint16, uint32, uint64
• float16, float32, float64

• complex64, complex128

• bool_, int_, float_, complex_ are shorthand for defaults. 

These can be used as functions to cast literals or sequence types, as well as 
arguments to NumPy functions that accept the dtype keyword argument. 
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>>> import numpy as np 
>>> x = np.float32(1.0)
>>> x 
1.0 
>>> y = np.int_([1,2,4])
>>> y 
array([1, 2, 4]) 
>>> z = np.arange(3, dtype=np.uint8)
>>> z 
array([0, 1, 2], dtype=uint8) 
>>> z.dtype
dtype('uint8') 

NUMPY DATATYPES
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NUMPY ARRAYS
There are a couple of mechanisms for creating arrays in NumPy:
• Conversion from other Python structures (e.g., lists, tuples)

• Any sequence-like data can be mapped to a ndarray
• Built-in NumPy array creation (e.g., arange, ones, zeros, etc.)

• Create arrays with all zeros, all ones, increasing numbers from 0 to 1 etc.
• Reading arrays from disk, either from standard or custom formats (e.g., reading in 

from a CSV file)
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NUMPY ARRAYS
In general, any numerical data that is stored in an array-like container can be 
converted to an ndarray through use of the array() function. The most obvious 
examples are sequence types like lists and tuples. 
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>>> x = np.array([2,3,1,0])

>>> x = np.array([2, 3, 1, 0])

>>> x = np.array([[1,2.0],[0,0],(1+1j,3.)])

>>> x = np.array([[ 1.+0.j, 2.+0.j], [ 0.+0.j, 0.+0.j],
[ 1.+1.j, 3.+0.j]])

[FSU]



NUMPY ARRAYS
Creating arrays from scratch in NumPy:
• zeros(shape)– creates an array filled with 0 values with the specified shape. The 

default dtype is float64.

• ones(shape) – creates an array filled with 1 values. 

• arange() – like Python’s built-in range

15

>>> np.zeros((2, 3))
array([[ 0., 0., 0.], [ 0., 0., 0.]]) 

>>> np.arange(10)
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) 
>>> np.arange(2, 10, dtype=np.float)
array([ 2., 3., 4., 5., 6., 7., 8., 9.]) 
>>> np.arange(2, 3, 0.2)
array([ 2. , 2.2, 2.4, 2.6, 2.8]) 

[FSU]



NUMPY ARRAYS
linspace()– creates arrays with a specified number of elements, and spaced 
equally between the specified beginning and end values.

random.random(shape) – creates arrays with random floats over the interval 
[0,1).
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>>> np.random.random((2,3))
array([[ 0.75688597, 0.41759916, 0.35007419], 

[ 0.77164187, 0.05869089, 0.98792864]]) 

>>> np.linspace(1., 4., 6)
array([ 1. , 1.6, 2.2, 2.8, 3.4, 4. ]) 

[FSU]



NUMPY ARRAYS
Printing an array can be done 
with the print
• statement (Python 2)

• function (Python 3)
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>>> import numpy as np 
>>> a = np.arange(3)
>>> print(a) 
[0 1 2] 
>>> a 
array([0, 1, 2]) 
>>> b = np.arange(9).reshape(3,3)
>>> print(b) 
[[0 1 2] 
[3 4 5] 
[6 7 8]] 
>>> c =
np.arange(8).reshape(2,2,2)
>>> print(c)
[[[0 1] 
[2 3]] 

[[4 5] 
[6 7]]] 

[FSU]



INDEXING
Single-dimension indexing is accomplished as usual.

Multi-dimensional arrays support multi-dimensional indexing.  
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>>> x = np.arange(10)
>>> x[2]
2 
>>> x[-2]
8 

>>> x.shape = (2,5) # now x is 2-dimensional
>>> x[1,3]
8 
>>> x[1,-1]
9 



INDEXING
Using fewer dimensions to index will result in a subarray:

This means that x[i, j] == x[i][j] but the second method is less efficient.
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>>> x = np.arange(10)
>>> x.shape = (2,5)
>>> x[0]
array([0, 1, 2, 3, 4]) 



INDEXING
Slicing is possible just as it is for typical Python sequences: 
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>>> x = np.arange(10)
>>> x[2:5]
array([2, 3, 4]) 
>>> x[:-7]
array([0, 1, 2]) 
>>> x[1:7:2]
array([1, 3, 5]) 
>>> y = np.arange(35).reshape(5,7)
>>> y[1:5:2,::3]
array([[ 7, 10, 13], [21, 24, 27]]) 



ARRAY OPERATIONS
Basic operations apply element-wise. The result is a new array with the resultant 
elements. 
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>>> a = np.arange(5)
>>> b = np.arange(5)
>>> a+b
array([0, 2, 4, 6, 8]) 
>>> a-b 
array([0, 0, 0, 0, 0]) 
>>> a**2
array([ 0, 1, 4, 9, 16]) 
>>> a>3
array([False, False, False, False, True], dtype=bool)
>>> 10*np.sin(a)
array([ 0., 8.41470985, 9.09297427, 1.41120008, -
7.56802495]) 
>>> a*b 
array([ 0, 1, 4, 9, 16]) 



ARRAY OPERATIONS
Since multiplication is done 
element-wise, you need to 
specifically perform a dot 
product to perform matrix 
multiplication. 
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>>> a = np.zeros(4).reshape(2,2)
>>> a 
array([[ 0., 0.],

[ 0., 0.]]) 
>>> a[0,0] = 1
>>> a[1,1] = 1
>>> b = np.arange(4).reshape(2,2)
>>> b 
array([[0, 1], 

[2, 3]]) 
>>> a*b 
array([[ 0., 0.], 

[ 0., 3.]]) 
>>> np.dot(a,b)
array([[ 0., 1.], 

[ 2., 3.]]) 



ARRAY OPERATIONS
There are also some built-in 
methods of ndarray objects.

Universal functions which may 
also be applied include exp, 
sqrt, add, sin, 
cos, etc.
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>>> a = np.random.random((2,3))
>>> a 
array([[ 0.68166391, 0.98943098, 
0.69361582], 

[ 0.78888081, 0.62197125, 
0.40517936]]) 
>>> a.sum()
4.1807421388722164 
>>> a.min()
0.4051793610379143 
>>> a.max(axis=0)
array([ 0.78888081, 0.98943098, 
0.69361582]) 
>>> a.min(axis=1)
array([ 0.68166391, 0.40517936]) 



ARRAY OPERATIONS

An array shape can be 
manipulated by a number of
methods.

resize(size) will modify 
an array in place.

reshape(size) will return 
a copy of the array with a 
new shape.  
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>>> a =
np.floor(10*np.random.random((3,4)))
>>> print(a) 
[[ 9. 8. 7. 9.] 
[ 7. 5. 9. 7.] 
[ 8. 2. 7. 5.]] 
>>> a.shape
(3, 4) 
>>> a.ravel()
array([ 9., 8., 7., 9., 7., 5., 9., 
7., 8., 2., 7., 5.]) 
>>> a.shape = (6,2)
>>> print(a) 
[[ 9. 8.] 
[ 7. 9.] 
[ 7. 5.] 
[ 9. 7.] 
[ 8. 2.] 
[ 7. 5.]] 
>>> a.transpose()
array([[ 9., 7., 7., 9., 8., 7.], 

[ 8., 9., 5., 7., 2., 5.]]) 



LINEAR ALGEBRA
One of the most common reasons 
for using the NumPy package is 
its linear algebra module. 

It’s like Matlab, but free!
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>>> from numpy import *
>>> from numpy.linalg import *
>>> a = array([[1.0, 2.0],

[3.0, 4.0]])
>>> print(a) 
[[ 1. 2.] 
[ 3. 4.]] 
>>> a.transpose()
array([[ 1., 3.], 

[ 2., 4.]]) 
>>> inv(a) # inverse
array([[-2. , 1. ], 

[ 1.5, -0.5]]) 
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(We’ll talk about this stuff as needed in 
the March/April machine learning and 
statistics lectures.)

>>> u = eye(2) # unit 2x2 matrix; "eye" represents "I"
>>> u 
array([[ 1., 0.], 

[ 0., 1.]]) 
>>> j = array([[0.0, -1.0], [1.0, 0.0]])
>>> dot(j, j) # matrix product
array([[-1., 0.], 

[ 0., -1.]]) 
>>> trace(u) # trace (sum of elements on diagonal)
2.0
>>> y = array([[5.], [7.]])
>>> solve(a, y) # solve linear matrix equation
array([[-3.], 

[ 4.]]) 
>>> eig(j) # get eigenvalues/eigenvectors of matrix
(array([ 0.+1.j, 0.-1.j]), 
array([[ 0.70710678+0.j, 0.70710678+0.j], 

[ 0.00000000-0.70710678j, 
0.00000000+0.70710678j]])) 



SCIPY?
In its own words: 

Basically, SciPy contains various tools and functions for solving common 
problems in scientific computing. 
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SciPy is a collection of mathematical algorithms and 
convenience functions built on the NumPy extension of Python. 
It adds significant power to the interactive Python session by 
providing the user with high-level commands and classes for 
manipulating and visualizing data.



SCIPY
SciPy gives you access to a ton of specialized mathematical functionality.
• Just know it exists. We won’t use it much in this class.
Some functionality:
• Special mathematical functions (scipy.special) -- elliptic, bessel, etc.
• Integration (scipy.integrate)
• Optimization (scipy.optimize)
• Interpolation (scipy.interpolate)
• Fourier Transforms (scipy.fftpack)
• Signal Processing (scipy.signal)
• Linear Algebra (scipy.linalg)
• Compressed Sparse Graph Routines (scipy.sparse.csgraph)
• Spatial data structures and algorithms (scipy.spatial)
• Statistics (scipy.stats)
• Multidimensional image processing (scipy.ndimage)
• Data IO (scipy.io) – overlaps with pandas, covers some other formats
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ONE SCIPY EXAMPLE
We can’t possibly tour all of the SciPy library and, even if we did, it might be a little 
boring.
• Often, you’ll be able to find higher-level modules that will work around your need to 

directly call low-level SciPy functions

Say you want to compute an integral:

!
!

"
sin 𝑥 𝑑𝑥
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SCIPY.INTEGRATE
We have a function object – np.sin defines the sin function for us.

We can compute the definite integral from 𝑥 = 0 to 𝑥 = 𝜋 using the quad function. 
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>>> res = scipy.integrate.quad(np.sin, 0, np.pi)
>>> print(res) 
(2.0, 2.220446049250313e-14) # 2 with a very small error 
margin!
>>> res = scipy.integrate.quad(np.sin, -np.inf, +np.inf)
>>> print(res) 
(0.0, 0.0) # Integral does not converge



SCIPY.INTEGRATE
Let’s say that we don’t have a function object, we only have some (x,y) samples 
that “define” our function.
We can estimate the integral using the trapezoidal rule.  
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>>> sample_x = np.linspace(0, np.pi, 1000)
>>> sample_y = np.sin(sample_x) # Creating 1,000 samples
>>> result = scipy.integrate.trapz(sample_y, sample_x)
>>> print(result)
1.99999835177 

>>> sample_x = np.linspace(0, np.pi, 1000000)
>>> sample_y = np.sin(sample_x) # Creating 1,000,000 
samples
>>> result = scipy.integrate.trapz(sample_y, sample_x)
>>> print(result) 
2.0



WRAP UP: FIRST PART
Shift thinking from imperative coding to operations on datasets

Numpy: A low-level abstraction that gives us really fast multi-dimensional arrays

Next class: 
Pandas: Higher-level tabular abstraction and operations to manipulate and 
combine tables

Reading Homework focuses on Pandas and SQL

32


