
INTRODUCTION TO
DATA SCIENCE
JOHN P DICKERSON

Lecture #4 – 09/09/2021
Lecture #5 – 09/14/2021

CMSC320
Tuesdays & Thursdays
5:00pm – 6:15pm

https://cmsc320.github.io/

ANNOUNCEMENTS
Register on Piazza: piazza.com/umd/fall2021/cmsc320
• XXX have registered already
• Very few have not registered yet

If you were on Piazza, you’d know …
• Project 1 will be out shortly. (Worth 10% of grade, as are each of the four

projects.)
• Link will be on course website @ cmsc320.github.io

We’ve also linked some reading for the week!
• Quizzes are generally due on Tuesdays at noon; on ELMS now.

2

THE DATA LIFECYCLE

3

Data
collection

Data
processing

Exploratory
analysis

&
Data viz

Analysis,
hypothesis
testing, &

ML

Insight &
Policy

Decision

NEXT FEW CLASSES
1. NumPy: Python Library for Manipulating nD Arrays

Multidimensional Arrays, and a variety of operations including Linear Algebra

2. Pandas: Python Library for Manipulating Tabular Data
Series, Tables (also called DataFrames)
Many operations to manipulate and combine tables/series

3. Relational Databases
Tables/Relations, and SQL (similar to Pandas operations)

4. Apache Spark
Sets of objects or key-value pairs
MapReduce and SQL-like operations

4

NEXT FEW CLASSES
1. NumPy: Python Library for Manipulating nD Arrays

Multidimensional Arrays, and a variety of operations including Linear Algebra

2. Pandas: Python Library for Manipulating Tabular Data
Series, Tables (also called DataFrames)
Many operations to manipulate and combine tables/series

3. Relational Databases
Tables/Relations, and SQL (similar to Pandas operations)

4. Apache Spark
Sets of objects or key-value pairs
MapReduce and SQL-like operations

5

NUMERIC & SCIENTIFIC
APPLICATIONS
Number of third-party packages available for numerical and scientific computing
These include:
• NumPy/SciPy – numerical and scientific function libraries.

• numba – Python compiler that support JIT compilation.

• ALGLIB – numerical analysis library.
• pandas – high-performance data structures and data analysis tools.

• pyGSL – Python interface for GNU Scientific Library.

• ScientificPython – collection of scientific computing modules.

6

Many, many thanks to: FSU CIS4930

NUMPY AND FRIENDS
By far, the most commonly used packages are those in the NumPy stack. These
packages include:
• NumPy: similar functionality as Matlab

• SciPy: integrates many other packages like NumPy

• Matplotlib & Seaborn – plotting libraries

• iPython via Jupyter – interactive computing
• Pandas – data analysis library

• SymPy – symbolic computation library

7

[FSU]

THE NUMPY STACK

8

Today/next class

Image from Continuum Analytics

Later

Mid- &
Late-

semester

NUMPY
Among other things, NumPy contains:
• A powerful n-dimensional array object.

• Sophisticated (broadcasting/universal) functions.

• Tools for integrating C/C++ and Fortran code.

• Useful linear algebra, Fourier transform, and random number capabilities, etc.

Besides its obvious scientific uses, NumPy can also be used as an efficient multi-
dimensional container of generic data.

9

[FSU]

NUMPY
ndarray object: an n-dimensional array of homogeneous data types, with many
operations being performed in compiled code for performance
Several important differences between NumPy arrays and the standard Python
sequences:
• NumPy arrays have a fixed size. Modifying the size means creating a new array.

• NumPy arrays must be of the same data type, but this can include Python objects –
may not get performance benefits

• More efficient mathematical operations than built-in sequence types.

10

[FSU]

NUMPY DATATYPES
Wider variety of data types than are built-in to the Python language by default.
Defined by the numpy.dtype class and include:

• intc (same as a C integer) and intp (used for indexing)

• int8, int16, int32, int64

• uint8, uint16, uint32, uint64
• float16, float32, float64

• complex64, complex128

• bool_, int_, float_, complex_ are shorthand for defaults.

These can be used as functions to cast literals or sequence types, as well as
arguments to NumPy functions that accept the dtype keyword argument.

11

[FSU]

>>> import numpy as np
>>> x = np.float32(1.0)
>>> x
1.0
>>> y = np.int_([1,2,4])
>>> y
array([1, 2, 4])
>>> z = np.arange(3, dtype=np.uint8)
>>> z
array([0, 1, 2], dtype=uint8)
>>> z.dtype
dtype('uint8')

NUMPY DATATYPES

12

[FSU]

NUMPY ARRAYS
There are a couple of mechanisms for creating arrays in NumPy:
• Conversion from other Python structures (e.g., lists, tuples)

• Any sequence-like data can be mapped to a ndarray
• Built-in NumPy array creation (e.g., arange, ones, zeros, etc.)

• Create arrays with all zeros, all ones, increasing numbers from 0 to 1 etc.
• Reading arrays from disk, either from standard or custom formats (e.g., reading in

from a CSV file)

13

[FSU]

NUMPY ARRAYS
In general, any numerical data that is stored in an array-like container can be
converted to an ndarray through use of the array() function. The most obvious
examples are sequence types like lists and tuples.

14

>>> x = np.array([2,3,1,0])

>>> x = np.array([2, 3, 1, 0])

>>> x = np.array([[1,2.0],[0,0],(1+1j,3.)])

>>> x = np.array([[1.+0.j, 2.+0.j], [0.+0.j, 0.+0.j],
[1.+1.j, 3.+0.j]])

[FSU]

NUMPY ARRAYS
Creating arrays from scratch in NumPy:
• zeros(shape)– creates an array filled with 0 values with the specified shape. The

default dtype is float64.

• ones(shape) – creates an array filled with 1 values.

• arange() – like Python’s built-in range

15

>>> np.zeros((2, 3))
array([[0., 0., 0.], [0., 0., 0.]])

>>> np.arange(10)
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> np.arange(2, 10, dtype=np.float)
array([2., 3., 4., 5., 6., 7., 8., 9.])
>>> np.arange(2, 3, 0.2)
array([2. , 2.2, 2.4, 2.6, 2.8])

[FSU]

NUMPY ARRAYS
linspace()– creates arrays with a specified number of elements, and spaced
equally between the specified beginning and end values.

random.random(shape) – creates arrays with random floats over the interval
[0,1).

16

>>> np.random.random((2,3))
array([[0.75688597, 0.41759916, 0.35007419],

[0.77164187, 0.05869089, 0.98792864]])

>>> np.linspace(1., 4., 6)
array([1. , 1.6, 2.2, 2.8, 3.4, 4.])

[FSU]

NUMPY ARRAYS
Printing an array can be done
with the print
• statement (Python 2)

• function (Python 3)

17

>>> import numpy as np
>>> a = np.arange(3)
>>> print(a)
[0 1 2]
>>> a
array([0, 1, 2])
>>> b = np.arange(9).reshape(3,3)
>>> print(b)
[[0 1 2]
[3 4 5]
[6 7 8]]
>>> c =
np.arange(8).reshape(2,2,2)
>>> print(c)
[[[0 1]
[2 3]]

[[4 5]
[6 7]]]

[FSU]

INDEXING
Single-dimension indexing is accomplished as usual.

Multi-dimensional arrays support multi-dimensional indexing.

18

>>> x = np.arange(10)
>>> x[2]
2
>>> x[-2]
8

>>> x.shape = (2,5) # now x is 2-dimensional
>>> x[1,3]
8
>>> x[1,-1]
9

INDEXING
Using fewer dimensions to index will result in a subarray:

This means that x[i, j] == x[i][j] but the second method is less efficient.

19

>>> x = np.arange(10)
>>> x.shape = (2,5)
>>> x[0]
array([0, 1, 2, 3, 4])

INDEXING
Slicing is possible just as it is for typical Python sequences:

20

>>> x = np.arange(10)
>>> x[2:5]
array([2, 3, 4])
>>> x[:-7]
array([0, 1, 2])
>>> x[1:7:2]
array([1, 3, 5])
>>> y = np.arange(35).reshape(5,7)
>>> y[1:5:2,::3]
array([[7, 10, 13], [21, 24, 27]])

ARRAY OPERATIONS
Basic operations apply element-wise. The result is a new array with the resultant
elements.

21

>>> a = np.arange(5)
>>> b = np.arange(5)
>>> a+b
array([0, 2, 4, 6, 8])
>>> a-b
array([0, 0, 0, 0, 0])
>>> a**2
array([0, 1, 4, 9, 16])
>>> a>3
array([False, False, False, False, True], dtype=bool)
>>> 10*np.sin(a)
array([0., 8.41470985, 9.09297427, 1.41120008, -
7.56802495])
>>> a*b
array([0, 1, 4, 9, 16])

ARRAY OPERATIONS
Since multiplication is done
element-wise, you need to
specifically perform a dot
product to perform matrix
multiplication.

22

>>> a = np.zeros(4).reshape(2,2)
>>> a
array([[0., 0.],

[0., 0.]])
>>> a[0,0] = 1
>>> a[1,1] = 1
>>> b = np.arange(4).reshape(2,2)
>>> b
array([[0, 1],

[2, 3]])
>>> a*b
array([[0., 0.],

[0., 3.]])
>>> np.dot(a,b)
array([[0., 1.],

[2., 3.]])

ARRAY OPERATIONS
There are also some built-in
methods of ndarray objects.

Universal functions which may
also be applied include exp,
sqrt, add, sin,
cos, etc.

23

>>> a = np.random.random((2,3))
>>> a
array([[0.68166391, 0.98943098,
0.69361582],

[0.78888081, 0.62197125,
0.40517936]])
>>> a.sum()
4.1807421388722164
>>> a.min()
0.4051793610379143
>>> a.max(axis=0)
array([0.78888081, 0.98943098,
0.69361582])
>>> a.min(axis=1)
array([0.68166391, 0.40517936])

ARRAY OPERATIONS

An array shape can be
manipulated by a number of
methods.

resize(size) will modify
an array in place.

reshape(size) will return
a copy of the array with a
new shape.

24

>>> a =
np.floor(10*np.random.random((3,4)))
>>> print(a)
[[9. 8. 7. 9.]
[7. 5. 9. 7.]
[8. 2. 7. 5.]]
>>> a.shape
(3, 4)
>>> a.ravel()
array([9., 8., 7., 9., 7., 5., 9.,
7., 8., 2., 7., 5.])
>>> a.shape = (6,2)
>>> print(a)
[[9. 8.]
[7. 9.]
[7. 5.]
[9. 7.]
[8. 2.]
[7. 5.]]
>>> a.transpose()
array([[9., 7., 7., 9., 8., 7.],

[8., 9., 5., 7., 2., 5.]])

LINEAR ALGEBRA
One of the most common reasons
for using the NumPy package is
its linear algebra module.

It’s like Matlab, but free!

25

>>> from numpy import *
>>> from numpy.linalg import *
>>> a = array([[1.0, 2.0],

[3.0, 4.0]])
>>> print(a)
[[1. 2.]
[3. 4.]]
>>> a.transpose()
array([[1., 3.],

[2., 4.]])
>>> inv(a) # inverse
array([[-2. , 1.],

[1.5, -0.5]])

LI
N

E
A

R
 A

LG
E

B
R

A

26

(We’ll talk about this stuff as needed in
the March/April machine learning and
statistics lectures.)

>>> u = eye(2) # unit 2x2 matrix; "eye" represents "I"
>>> u
array([[1., 0.],

[0., 1.]])
>>> j = array([[0.0, -1.0], [1.0, 0.0]])
>>> dot(j, j) # matrix product
array([[-1., 0.],

[0., -1.]])
>>> trace(u) # trace (sum of elements on diagonal)
2.0
>>> y = array([[5.], [7.]])
>>> solve(a, y) # solve linear matrix equation
array([[-3.],

[4.]])
>>> eig(j) # get eigenvalues/eigenvectors of matrix
(array([0.+1.j, 0.-1.j]),
array([[0.70710678+0.j, 0.70710678+0.j],

[0.00000000-0.70710678j,
0.00000000+0.70710678j]]))

SCIPY?
In its own words:

Basically, SciPy contains various tools and functions for solving common
problems in scientific computing.

27

SciPy is a collection of mathematical algorithms and
convenience functions built on the NumPy extension of Python.
It adds significant power to the interactive Python session by
providing the user with high-level commands and classes for
manipulating and visualizing data.

SCIPY
SciPy gives you access to a ton of specialized mathematical functionality.
• Just know it exists. We won’t use it much in this class.
Some functionality:
• Special mathematical functions (scipy.special) -- elliptic, bessel, etc.
• Integration (scipy.integrate)
• Optimization (scipy.optimize)
• Interpolation (scipy.interpolate)
• Fourier Transforms (scipy.fftpack)
• Signal Processing (scipy.signal)
• Linear Algebra (scipy.linalg)
• Compressed Sparse Graph Routines (scipy.sparse.csgraph)
• Spatial data structures and algorithms (scipy.spatial)
• Statistics (scipy.stats)
• Multidimensional image processing (scipy.ndimage)
• Data IO (scipy.io) – overlaps with pandas, covers some other formats

28

ONE SCIPY EXAMPLE
We can’t possibly tour all of the SciPy library and, even if we did, it might be a little
boring.
• Often, you’ll be able to find higher-level modules that will work around your need to

directly call low-level SciPy functions

Say you want to compute an integral:

!
!

"
sin 𝑥 𝑑𝑥

29

SCIPY.INTEGRATE
We have a function object – np.sin defines the sin function for us.

We can compute the definite integral from 𝑥 = 0 to 𝑥 = 𝜋 using the quad function.

30

>>> res = scipy.integrate.quad(np.sin, 0, np.pi)
>>> print(res)
(2.0, 2.220446049250313e-14) # 2 with a very small error
margin!
>>> res = scipy.integrate.quad(np.sin, -np.inf, +np.inf)
>>> print(res)
(0.0, 0.0) # Integral does not converge

SCIPY.INTEGRATE
Let’s say that we don’t have a function object, we only have some (x,y) samples
that “define” our function.
We can estimate the integral using the trapezoidal rule.

31

>>> sample_x = np.linspace(0, np.pi, 1000)
>>> sample_y = np.sin(sample_x) # Creating 1,000 samples
>>> result = scipy.integrate.trapz(sample_y, sample_x)
>>> print(result)
1.99999835177

>>> sample_x = np.linspace(0, np.pi, 1000000)
>>> sample_y = np.sin(sample_x) # Creating 1,000,000
samples
>>> result = scipy.integrate.trapz(sample_y, sample_x)
>>> print(result)
2.0

WRAP UP: FIRST PART
Shift thinking from imperative coding to operations on datasets

Numpy: A low-level abstraction that gives us really fast multi-dimensional arrays

Next class:
Pandas: Higher-level tabular abstraction and operations to manipulate and
combine tables

Reading Homework focuses on Pandas and SQL

32

