INTRODUCTION TO
DATA SCIENCE

JOHN P DICKERSON

Lecture #4 — 09/09/2021
Lecture #5 — 09/14/2021

CMSC320
Tuesdays & Thursdays
5:00pm — 6:15pm

COMPUTER SCIENCE
UNIVERSITY OF MARYLAND

https://cmsc320.github.io/

ANNOUNCEMENTS

Register on Piazza: piazza.com/umd/fall2021/cmsc320
« XXX have registered already N

« \ery few have not registered yet W

If you were on Piazza, you’d know ...

« Project 1 will be out shortly. (Worth 10% of grade, as are each of the four
projects.)

» Link will be on course website @ cmsc320.github.io

We’ve also linked some reading for the week!
* Quizzes are generally due on Tuesdays at noon; on ELMS now.

THE DATA LIFECYCLE

Exploratory Analysis,
Data Data analysis hypothesis

collection processing & testing, &

Data viz ML

Insight &
Policy
Decision

NEXT FEW CLASSES

1. NumPy: Python Library for Manipulating nD Arrays
Multidimensional Arrays, and a variety of operations including Linear Algebra

2. Pandas: Python Library for Manipulating Tabular Data

Series, Tables (also called DataFrames)
Many operations to manipulate and combine tables/series

3. Relational Databases
Tables/Relations, and SQL (similar to Pandas operations)

4. Apache Spark

Sets of objects or key-value pairs
MapReduce and SQL-like operations

NEXT FEW CLASSES

1. NumPy: Python Library for Manipulating nD Arrays
Multidimensional Arrays, and a variety of operations including Linear Algebra

2. Pandas: Python Library for Manipulating Tabular Data

Series, Tables (also called DataFrames)
Many operations to manipulate and combine tables/series

3. Relational Databases
Tables/Relations, and SQL (similar to Pandas operations)

4. Apache Spark

Sets of objects or key-value pairs
MapReduce and SQL-like operations

NUMERIC & SCIENTIFIC
APPLICATIONS

Number of third-party packages available for numerical and scientific computing

These include:

 NumPy/SciPy — numerical and scientific function libraries.

numba — Python compiler that support JIT compilation.

ALGLIB — numerical analysis library.

pandas — high-performance data structures and data analysis tools.
pyGSL — Python interface for GNU Scientific Library.

ScientificPython — collection of scientific computing modules.

Many, many thanks to: FSU CIS4930

NUMPY AND FRIENDS

By far, the most commonly used packages are those in the NumPy stack. These
packages include:

* NumPy: similar functionality as Matlab

« SciPy: integrates many other packages like NumPy
« Matplotlib & Seaborn — plotting libraries

« iPython via Jupyter — interactive computing
 Pandas — data analysis library

SymPy — symbolic computation library

[FSU]

THE NUMPY STACK
Mid- &
Late-

... Many many more . l semester
B e
) =

Today/next class
Later

Image from Continuum Analytics

NUMPY

Among other things, NumPy contains:

* A powerful n-dimensional array object.

« Sophisticated (broadcasting/universal) functions.
« Tools for integrating C/C++ and Fortran code.

« Useful linear algebra, Fourier transform, and random number capabilities, etc.

Besides its obvious scientific uses, NumPy can also be used as an efficient multi-
dimensional container of generic data.

[FSU]

NUMPY

ndarray object: an n-dimensional array of homogeneous data types, with many
operations being performed in compiled code for performance

Several important differences between NumPy arrays and the standard Python
sequences:

« NumPy arrays have a fixed size. Modifying the size means creating a new array.

« NumPy arrays must be of the same data type, but this can include Python objects —
may not get performance benefits

» More efficient mathematical operations than built-in sequence types.

[FSU]

NUMPY DATATYPES

Wider variety of data types than are built-in to the Python language by default.
Defined by the numpy . dtype class and include:

* intc (same as a C integer) and intp (used for indexing)

« int8, int16, int32, int64

e uint8, uint16, uint32, uint64

 float16, float32, floatc4

« complex64, complex128

 bool_, int_, float_, complex_ are shorthand for defaults.

These can be used as functions to cast literals or sequence types, as well as
arguments to NumPy functions that accept the dtype keyword argument.

[FSU]

NUMPY DATATYPES

>>> numpy as np
>>> .float32(1.0)
>>>

>>> .int ([1,2,41)
>>>

>>> np.arange (3, dtype=np.uint8)
>>>

array ([0, 1, 2], dtype=uint8)

>>> z.dtype

dtype ('uint8"'")

[FSU]

NUMPY ARRAYS

There are a couple of mechanisms for creating arrays in NumPy:
« Conversion from other Python structures (e.g., lists, tuples)

* Any sequence-like data can be mapped to a ndarray
* Built-in NumPy array creation (e.g., arange, ones, zeros, etc.)

- Create arrays with all zeros, all ones, increasing numbers from 0 to 1 etc.
« Reading arrays from disk, either from standard or custom formats (e.g., reading in
from a CSV file)

[FSU]

NUMPY ARRAYS

In general, any numerical data that is stored in an array-like container can be
converted to an ndarray through use of the array () function. The most obvious

examples are sequence types like lists and tuples.

np.array([2,3,1,0])

np.array([2, 3, 1, 01)

np.array([[1,2.0],[0,0],(1+13,3.)1)

= np.array([[1.40.9, 2.+0.51, [0.+0.35, 0.40.31,
4+1.5, 3.40.3511)

[FSU]

NUMPY ARRAYS

Creating arrays from scratch in NumPy:

« zeros (shape)— creates an array filled with 0 values with the specified shape. The
default dtype is float64.

>>> np.zeros((2, 3))

 ones (shape) — creates an array filled with 1 values.

« arange () — like Python’s built-in range
>>> np.arange (10)

>>> np.arange (2, 10, dtype=np.float)

>>> np.arange (2, 3, 0.2)

[FSU]

NUMPY ARRAYS

linspace ()— creates arrays with a specified number of elements, and spaced
equally between the specified beginning and end values.

>>> np.linspace(l., 4.,

random.random(shape) — creates arrays with random floats over the interval
[0,1).

>>> np.random.random((2,3))

[FSU]

import numpy as np

NUMPY ARRAYS a = np.arange(3)

print (a)

Printing an array can be done
with the print

a

 statement (Python 2) b = np.arange(9) .reshape (3, 3)
print (b)

« function (Python 3)

>>> C =
np.arange (8) .reshape(2,2,2)
>>> print (c)

[FSU]

INDEXING

Single-dimension indexing is accomplished as usual.

>>> x = np.arange(10)
>>> x[2]

>>> x[-2]

Multi-dimensional arrays support multi-dimensional indexing.

>>> x.shape = (2,5) # now x is Z2-dimensional
>>> x[1,3]

>>> x[1,-1]

INDEXING

Using fewer dimensions to index will result in a subarray:

>>> x = np.arange(10)
>>> x.shape = (2,5)

>>> x[0]

This means that x[i, 51 == x[i1[51 but the second method is less efficient.

INDEXING

Slicing is possible just as it is for typical Python sequences:

>>> x = np.arange(10)
>>> x[2:5]

>>> x[:-7]

>>> x[1:7:2]

>>> yv = np.arange(35) .reshape (5, 7)
>>> y[1:5:2,::3]

ARRAY OPERATIONS

Basic operations apply element-wise. The result is a new array with the resultant
elements.
= np.arange (5)

np.arange (5)

ax*x*x)

a>3

10*np.sin(a)

ARRAY OPERATIONS

Since multiplication is done
element-wise, you need to
specifically perform a dot
product to perform matrix
multiplication.

.zeros (4) .reshape(2,2)

= 1

= 1
.arange (4) .reshape (2, 2)

np.dot (a,b)

ARRAY OPERATIONS

There are also some built-in
methods of ndarray objects.

Universal functions which may
also be applied include exp,
sqrt, add, sin,

cos, etc.

= np.random.random((2,3))

.sum{()
.min ()

.max (axis=0)

.min (axis=1)

ARRAY OPERATIONS

An array shape can be
manipulated by a number of
methods.

resize (size) will modify
an array in place.

reshape (size) will return

a copy of the array with a
new shape.

>>> a =
np.floor (10*np.random.random((3,4)))
>>> print(a)

>>> a.shape

>>> a.ravel ()

>>> a.shape = (6,2)
>>> print (a)

>>> a.transpose()

LINEAR ALGEBRA

One of the most common reasons
for using the NumPy package is
its linear algebra module.

It’s like Matlab, but free!

from numpy import *

from numpy.linalg import *

a = array([[1.0, 2.0],
[3.0, 4.011)

print (a)

a.transpose()

inv(a) # inverse

0
L
T
=
<
-
<
L
2
=l

eye(2) # unit 2x2 matrix,; "eye" represents "I"

= array([[0.0, -1.0], [1.0, 0.011)
dot(j, J) # matrix product

trace(u) # trace (sum of elements on diagonal)
y = array([[5.1, [7-11)

solve(a, y) # solve linear matrix equation

eig(j) # get eigenvalues/eigenvectors of matrix

SCIPY?

In its own words:

SciPy is a collection of mathematical algorithms and
convenience functions built on the NumPy extension of Python.
It adds significant power to the interactive Python session by
providing the user with high-level commands and classes for
manipulating and visualizing data.

Basically, SciPy contains various tools and functions for solving common
problems in scientific computing.

SCIPY

SciPy gives you access to a ton of specialized mathematical functionality.
* Just know it exists. We won’t use it much in this class.

Some functionality:

« Special mathematical functions (scipy.special) -- elliptic, bessel, etc.
* Integration (scipy.integrate)

* Optimization (scipy.optimize)

* Interpolation (scipy.interpolate)

» Fourier Transforms (scipy.fftpack)

« Signal Processing (scipy.signal)

* Linear Algebra (scipy.linalg)

« Compressed Sparse Graph Routines (scipy.sparse.csgraph)

« Spatial data structures and algorithms (scipy.spatial)

« Statistics (scipy.stats)

* Multidimensional image processing (scipy.ndimage)

« Data IO (scipy.io) — overlaps with pandas, covers some other formats

ONE SCIPY EXAMPLE

We can’t possibly tour all of the SciPy library and, even if we did, it might be a little
boring.

« Often, you'll be able to find higher-level modules that will work around your need to
directly call low-level SciPy functions

Say you want to compute an integral:

V

"‘ /\| l.liil'; "’ /\

b “; \ 0. |/ ||| |
f sin x dx S e W o

a ~0 5 \ /
_/. = \/

SCIPY.INTEGRATE

We have a function object — np.sin defines the sin function for us.

We can compute the definite integral from x = 0 to x = 7 using the quad function.

>>> res = sclpy.lntegrate.quad(np.sin, 0, np.pi)
>>> print (res)

2 with a very small error
margin!
>>> res = scilpy.lntegrate.quad(np.sin, -np.inf, +np.inf)
>>> print (res)

Integral does not converge

SCIPY.INTEGRATE

Let’s say that we don’t have a function object, we only have some (x,y) samples
that “define” our function.

We can estimate the integral using the trapezoidal rule.

>>> sample x = np.linspace(0, np.pi, 1000)

>>> sample y = np.sin(sample x) # Creating 1,000 samples
>>> result = scipy.integrate.trapz(sample y, sample x)
>>> print (result)

>>> sample x = np.linspace(0, np.pi, 1000000)

>>> sample y = np.sin(sample x) # Creating 1,000,000
samples

>>> result = scipy.integrate.trapz(sample y, sample Xx)
>>> print (result)

WRAP UP: FIRST PART

Shift thinking from imperative coding to operations on datasets

Numpy: A low-level abstraction that gives us really fast multi-dimensional arrays

Next class:

Pandas: Higher-level tabular abstraction and operations to manipulate and
combine tables

Reading Homework focuses on Pandas and SQL

