
INTRODUCTION TO
DATA SCIENCE
JOHN P DICKERSON

Lecture #3 – 09/07/2021

CMSC320
Tuesdays & Thursdays
5:00pm – 6:15pm

https://cmsc320.github.io/

ANNOUNCEMENTS
Register on Piazza: piazza.com/umd/fall2021/cmsc320
• 288 have registered already
• Some have not registered yet

If you were on Piazza, you’d know …
• Project 0 is out! And is also “due” today. (Worth zero points!)
• Link: https://github.com/cmsc320/fall2021/tree/master/project0

We’ve also linked some reading for the week!
• Second quiz is due Tuesday at noon; on ELMS now.

2

https://github.com/cmsc320/fall2021/tree/master/project0

ANNOUNCEMENTS
Quiz #1, Question #7 caused some issues:

Multiple correct answers, my key missed some of them; let me know if this made
difference between passing and failing

3

ANNOUNCEMENTS
Office hours will be posted tonight course webpage:
• https://cmsc320.github.io/

• Subject to change; I will update the course webpage if so!

Office hours are held in person or via Zoom – TAs to provide details in the future,
on Piazza, will keep Piazza updated as well.

We have coverage for every weekday (MTWThF).
• TAs will also “cover” Piazza for the working hours of the day on which they are

holding office hours.

4

https://cmsc320.github.io/

VERY SHORT WRAP-UP ON “PYTHON
STUFF” FROM LAST LECTURE …

5

PYTHON 2 VS 3
Python 3 is intentionally backwards incompatible
• (But not that incompatible)
Biggest changes that matter for us:
• print “statement” à print(“function”)

• 1/2 = 0 à 1/2 = 0.5 and 1//2 = 0
• ASCII str default à default Unicode
Namespace ambiguity fixed:

i = 1

[i for i in range(5)]

print(i) # ????????

Python 2: prints “4”; Python 3: prints “1” (narrow scope)

6

TO ANY CURMUDGEONS …
If you’re going to use Python 2 anyway, use the _future_ module:
• Python 3 introduces features that will throw runtime errors in Python 2 (e.g., with

statements)
• _future_ module incrementally brings 3 functionality into 2

• https://docs.python.org/2/library/__future__.html

from _future_ import division

from _future_ import print_function

from _future_ import please_just_use_python_3

7

SO, HOW DOES IMPORT
WORK?
Python code is stored in module – simply put,
a file full of Python code
A package is a directory (tree) full of modules
that also contains a file called __init.py__

• Packages let you structure Python’s module
namespace

• E.g., X.Y is a submodule Y in a package
named X

For one module to gain access to code in
another module, it must import it

8

Load (sub)module sound.effects.echo
import sound.effects.echo
Must use full name to reference echo functions
sound.effects.echo.echofilter(input, output, delay=0.7)

https://docs.python.org/2/tutorial/modules.html

E
X

A
M

P
LE

9

Load (sub)module sound.effects.echo
import sound.effects.echo
Must use full name to reference echo functions
sound.effects.echo.echofilter(input, output, delay=0.7)

https://docs.python.org/2/tutorial/modules.html

Load (sub)module sound.effects.echo
from sound.effects import echo
No longer need the package prefix for functions in echo
echo.echofilter(input, output, delay=0.7)

Load a specific function directly
from sound.effects.echo import echofilter
Can now use that function with no prefix
echofilter(input, output, delay=0.7)

PYTHON VS R (FOR DATA
SCIENTISTS)
There is no right answer here!
• Python is a “full” programming

language – easier to integrate with
systems in the field

• R has a more mature set of pure stats
libraries …

• … but Python is catching up quickly
…

• … and is already ahead specifically
for ML.

You will see Python more in the tech
industry.
• https://insights.stackoverflow.com/survey/2021 10

EXTRA RESOURCES
Plenty of tutorials on the web:
• https://www.learnpython.org/

Work through Project 0, which will take you through some baby steps with Python
and the Pandas library:
• (We’ll also post some more readings soon.)

Come (virtually?) hang out at office hours:
• All office hours will be on the website/Piazza by tonight.

• Will have coverage MTWThF.

11

12

TODAY’S LECTURE

13

Data
collection

Data
processing

Exploratory
analysis

&
Data viz

Analysis,
hypothesis
testing, &

ML

Insight &
Policy

Decision

with

Thanks: Zico Kolter’s 15-388, Amol Deshpande, Nick Mattei

14

WHAT IS THIS “DATA”?

TABULAR DATA
Data is an abstraction of some real world entity.
• Also called: instance, example, record, object, case, individual.

Each of these entities is described by a set of features.
• Sometimes called variables, features, attributes, …

Can be processed into an n (number of entities) by m (number of attributes)
matrix.
• Result of merging & processing different records!

• Picking the data that goes into this table has both technical and ethical concerns
(recall: Target, Netflix, AOL examples)

15

ID Title Author Year Cover Edition Price
1 Emma Austen 1815 Paper 20th $5.75
2 Dracula Stoker 1897 Hard 15th $12.00
3 Ivanhoe Scott 1820 Hard 8th $25.00
4 Kidnapped Stevenson 1886 Paper 11th $5.00

Quick teaser. We’ll go
into greater depth when

discussing tidy data.

CLASSICAL STATISTICAL
VIEW OF DATA
There are four classical types of data

16

Data Types

Categorical
Nominal

Ordinal

Numerical
Interval

Ratio

CATEGORICAL DATA: TAKES A
VALUE FROM A FINITE SET
Nominal (aka Categorical) Data:
• Values have names: describe the categories, classes, or states of things
• Marital status, drink type, or some binary attribute
• Cannot compare easily, thus cannot naturally order them
Ordinal Data:
• Values have names: describe the categories, classes, or states of things
• However, there is an ordering over the values:

• Strongly like, like, neutral, strongly dislike
• Lacks a mathematical notion of distance between the values

This distinction can be blurry…
• Is there an ordering over: sunny, overcast, rainy?

NUMERICAL DATA: MEASURED
USING INTEGERS OR REALS
Interval Scale:
• Scale with fixed but arbitrary interval (e.g., dates)
• The difference between two values is meaningful:

• Difference between 9/1/2019 and 10/1/2019 is the same as the difference between
9/1/2018 and 10/1/2018

• Can’t compute ratios or scales: e.g., what unit is 9/1/2019 * 8/2/2020?

Ratio Scale:
• All the same properties as interval scale data, but the scale of measurement also

possesses a true-zero origin
• Can look at the ratio of two quantities (unlike interval)
• E.g., zero money is an absolute, one money is half as much as two money, and so on

18

NUMERICAL DATA: EXAMPLES
Temperatures:
• Celsius / Fahrenheit: interval or ratio scale ???????????

• Interval: 0C is not 0 heat, but is an arbitrary fixed point
• Hence, we can’t say that 30F is twice as warm as 15F.

• Kelvin (K): interval or ratio scale ???????????
• Ratio: 0K is assumed to mean zero heat, a true fixed point

Weight:
• Grams: interval or ratio scale ??????????

• Ratio: 0g served as fixed point, 4g is twice 2g, …

19

GENERAL RULES

20

Thanks to GraphPad

OK to compute.... Nominal Ordinal Interval Ratio
frequency
distribution Yes Yes Yes Yes

median and
percentiles No Yes Yes Yes

add or subtract No No Yes Yes
mean, standard
deviation, standard
error of the mean

No No Yes Yes

ratio, or coefficient of
variation No No No Yes

? ? ? ?

GENERAL RULES

21

OK to compute.... Nominal Ordinal Interval Ratio
frequency
distribution Yes Yes Yes Yes

median and
percentiles No Yes Yes Yes

add or subtract No No Yes Yes
mean, standard
deviation, standard
error of the mean

No No Yes Yes

ratio, or coefficient of
variation No No No Yes

? ? ? ?

GENERAL RULES

22

OK to compute.... Nominal Ordinal Interval Ratio
frequency
distribution Yes Yes Yes Yes

median and
percentiles No Yes Yes Yes

addition or
subtraction No No Yes Yes

mean, standard
deviation, standard
error of the mean

No No Yes Yes

ratio, or coefficient of
variation No No No Yes

? ? ? ?

GENERAL RULES

23

OK to compute.... Nominal Ordinal Interval Ratio
frequency
distribution Yes Yes Yes Yes

median and
percentiles No Yes Yes Yes

addition or
subtraction No No Yes Yes

mean or standard
deviation No No Yes Yes

ratio, or coefficient of
variation No No No Yes

? ? ? ?

GENERAL RULES

24

OK to compute.... Nominal Ordinal Interval Ratio
frequency
distribution Yes Yes Yes Yes

median and
percentiles No Yes Yes Yes

addition or
subtraction No No Yes Yes

mean or standard
deviation No No Yes Yes

ratio, or coefficient of
variation No No No Yes? ? ? ?

GENERAL RULES

25

OK to compute.... Nominal Ordinal Interval Ratio
frequency
distribution Yes Yes Yes Yes

median and
percentiles No Yes Yes Yes

addition or
subtraction No No Yes Yes

mean or standard
deviation No No Yes Yes

ratio, or coefficient of
variation No No No Yes

DATA MANIPULATION AND
COMPUTATION
Data Science == manipulating and computing on data

Large to very large, but somewhat “structured” data
We will see several tools for doing that this semester

Thousands more out there that we won’t cover

Need to learn to shift thinking from:

Imperative code to manipulate data structures
to:

Sequences/pipelines of operations on data

Should still know how to implement the operations themselves, especially for debugging
performance (covered in classes like 420, 424), but we won’t cover that much

26

DATA MANIPULATION AND
COMPUTATION
1. Data Representation, i.e., what is the natural way to think about given data

2. Data Processing Operations, which take one or more datasets as input and
produce one or more datasets as output

27

Indexing
Slicing/subsetting
Filter
‘map’ à apply a function to every element
’reduce/aggregate’ à combine values to get a
single scalar (e.g., sum, median)

Given two vectors: Dot and cross products

0.1 2 3.2 6.5 3.4 4.1

“data” ”representation” ”i.e.”

One-dimensional Arrays, Vectors

DATA MANIPULATION AND
COMPUTATION
1. Data Representation, i.e., what is the natural way to think about given data

2. Data Processing Operations, which take one or more datasets as input and
produce one or more datasets as output

28

Indexing
Slicing/subsetting
Filter
‘map’ à apply a function to every
element
’reduce/aggregate’ à combine
values across a row or a column (e.g.,
sum, average, median etc..)

n-dimensional arrays

DATA MANIPULATION AND
COMPUTATION
1. Data Representation, i.e., what is the natural way to think about given data

2. Data Processing Operations, which take one or more datasets as input and
produce one or more datasets as output

29

n-dimensional array operations

+

Linear Algebra
Matrix/tensor multiplication
Transpose
Matrix-vector multiplication
Matrix factorization

Matrices, Tensors

DATA MANIPULATION AND
COMPUTATION
1. Data Representation, i.e., what is the natural way to think about given data

2. Data Processing Operations, which take one or more datasets as input and
produce one or more datasets as output

30

Filter
Map
Union

Reduce/Aggregate

Given two sets, Combine/Join using
“keys”

Group and then aggregate

Sets: of Objects

Sets: of (Key, Value Pairs)

(amol@cs.umd.edu,(email1, email2,…))

(john@cs.umd.edu,(email3, email4,…))

mailto:amol@cs.umd.edu

DATA MANIPULATION AND
COMPUTATION
1. Data Representation, i.e., what is the natural way to think about given data

2. Data Processing Operations, which take one or more datasets as input and
produce one or more datasets as output

31

Filter rows or columns

”Join” two or more relations

”Group” and “aggregate” them

Relational Algebra formalizes some
of them

Structured Query Language (SQL)
Many other languages and
constructs, that look very similar

Tables/Relations == Sets of Tuples

DATA MANIPULATION AND
COMPUTATION
1. Data Representation, i.e., what is the natural way to think about given data

2. Data Processing Operations, which take one or more datasets as input and
produce one or more datasets as output

32

Hierarchies/Trees/Graphs
“Path” queries

Graph Algorithms and
Transformations

Network Science

Somewhat more ad hoc and special-
purpose

Changing in recent years

DATA MANIPULATION AND
COMPUTATION
1. Data Representation, i.e., what is the natural way to think about given data

2. Data Processing Operations, which take one or more datasets as input and
produce

• Why?
• Allows one to think at a higher level of abstraction, leading to simpler and easier-to-

understand scripts
• Provides ”independence” between the abstract operations and concrete implementation
• Can switch from one implementation to another easily

• For performance debugging, useful to know how they are implemented and rough
characteristics

33

THE REST OF TODAY’S LECTURE

34

Data
collection

Data
processing

Exploratory
analysis

&
Data viz

Analysis,
hypothesis
testing, &

ML

Insight &
Policy

Decision

… on to the “collection” part of things …

GOTTA CATCH ‘EM ALL
Five ways to get data:
• Direct download and load from local storage
• Generate locally via downloaded code (e.g., simulation)
• Query data from a database (covered in a few lectures)
• Query an API from the intra/internet
• Scrape data from a webpage

35

Covered today.

WHEREFORE ART THOU, API?
A web-based Application Programming Interface (API) like we’ll be using in this
class is a contract between a server and a user stating:

“If you send me a specific request, I will return some information in a structured
and documented format.”

(More generally, APIs can also perform actions, may not be web-based, be a set of
protocols for communicating between processes, between an application and an
OS, etc.)

36

“SEND ME A SPECIFIC
REQUEST”
Most web API queries we’ll be doing will use HTTP requests:
• conda install –c anaconda requests=2.12.4

37

http://docs.python-requests.org/en/master/

r = requests.get('https://api.github.com/user',
auth=('user', 'pass'))

200

r.status_code

r.headers[‘content-type’]

‘application/json; charset=utf8’

r.json()

{u'private_gists': 419, u'total_private_repos': 77, ...}

HTTP REQUESTS
https://www.google.com/?q=cmsc320&tbs=qdr:m

HTTP GET Request:
GET /?q=cmsc320&tbs=qdr:m HTTP/1.1
Host: www.google.com
User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:10.0.1) Gecko/20100101 Firefox/10.0.1

38

??????????

params = { “q”: “cmsc320”, “tbs”: “qdr:m” }
r = requests.get(“https://www.google.com”,

params = params)

*be careful with https:// calls; requests will not verify SSL by default

RESTFUL APIS
This class will just query web APIs, but full web APIs typically allow more.
Representational State Transfer (RESTful) APIs:
• GET: perform query, return data

• POST: create a new entry or object

• PUT: update an existing entry or object
• DELETE: delete an existing entry or object

Can be more intricate, but verbs (“put”) align with actions

39

QUERYING A RESTFUL API
Stateless: with every request, you send along a token/authentication of who you
are

GitHub is more than a GETHub:
• PUT/POST/DELETE can edit your repositories, etc.

• Try it out: https://github.com/settings/tokens/new

40

token = ”super_secret_token”
r = requests.get(“https://github.com/user”,

params={”access_token”: token})
print(r.content)

{"login":”JohnDickerson","id":472985,"avatar_url":"ht…

AUTHENTICATION AND
OAUTH
Old and busted:

New hotness:
• What if I wanted to grant an app access to, e.g., my Facebook account without giving

that app my password?

• OAuth: grants access tokens that give (possibly incomplete) access to a user or app
without exposing a password

41

r = requests.get(“https://api.github.com/user”,
auth=(“JohnDickerson”, “ILoveKittens”))

“… I WILL RETURN INFORMATION
IN A STRUCTURED FORMAT.”
So we’ve queried a server using a well-formed GET request via the requests
Python module. What comes back?
General structured data:
• Comma-Separated Value (CSV) files & strings

• Javascript Object Notation (JSON) files & strings

• HTML, XHTML, XML files & strings
Domain-specific structured data:
• Shapefiles: geospatial vector data (OpenStreetMap)

• RVT files: architectural planning (Autodesk Revit)

• You can make up your own! Always document it.

42

GRAPHQL?
An alternative to REST and ad-hoc webservice architectures

• Developed internally by Facebook and released publicly
Unlike REST, the requester specifies the format of the response

43https://dev-blog.apollodata.com/graphql-vs-rest-5d425123e34b

CSV FILES IN PYTHON
Any CSV reader worth anything can parse files with any delimiter, not just a
comma (e.g., “TSV” for tab-separated)
1,26-Jan,Introduction,—,"pdf, pptx",Dickerson,
2,31-Jan,Scraping Data with Python,Anaconda's Test Drive.,,Dickerson,
3,2-Feb,"Vectors, Matrices, and Dataframes",Introduction to pandas.,,Dickerson,
4,7-Feb,Jupyter notebook lab,,,"Denis, Anant, & Neil",
5,9-Feb,Best Practices for Data Science Projects,,,Dickerson,

Don’t write your own CSV or JSON parser

(We’ll use pandas to do this much more easily and efficiently)

44

import csv
with open(“schedule.csv”, ”rb”) as f:

reader = csv.reader(f, delimiter=“,”, quotechar=’”’)
for row in reader:

print(row)

JSON FILES & STRINGS
JSON is a method for serializing objects:
• Convert an object into a string (done in Java in 131/132?)

• Deserialization converts a string back to an object

Easy for humans to read (and sanity check, edit)
Defined by three universal data structures

45

Images from: http://www.json.org/

Python dictionary, Java
Map, hash table, etc …

Python list, Java array,
vector, etc …

Python string, float, int,
boolean, JSON object,
JSON array, …

JSON IN PYTHON
Some built-in types: “Strings”, 1.0, True, False, None
Lists: [“Goodbye”, “Cruel”, “World”]
Dictionaries: {“hello”: “bonjour”, “goodbye”: “au revoir”}

Dictionaries within lists within dictionaries within lists:
[1, 2, {“Help”:[

“I’m”, {“trapped”: “in”},
“CMSC320”
]}]

46

JSON FROM TWITTER

47

GET https://api.twitter.com/1.1/friends/list.json?cursor=-
1&screen_name=twitterapi&skip_status=true&include_user_entitie
s=false

{
"previous_cursor": 0,
"previous_cursor_str": "0",
"next_cursor": 1333504313713126852,
"users": [{

"profile_sidebar_fill_color": "252429",
"profile_sidebar_border_color": "181A1E",
"profile_background_tile": false,
"name": "Sylvain Carle",
"profile_image_url":

"http://a0.twimg.com/profile_images/2838630046/4b82e286a659fae310012520f4f7
56bb_normal.png",

"created_at": "Thu Jan 18 00:10:45 +0000 2007", …

PARSING JSON IN PYTHON
Repeat: don’t write your own CSV or JSON parser
• https://news.ycombinator.com/item?id=7796268

• rsdy.github.io/posts/dont_write_your_json_parser_plz.html

Python comes with a fine JSON parser

48

import json

r = requests.get(
“https://api.twitter.com/1.1/statuses/user_timeline.jso
n?screen_name=JohnPDickerson&count=100”, auth=auth)

data = json.loads(r.content)

json.load(some_file) # loads JSON from a file
json.dump(json_obj, some_file) # writes JSON to file
json.dumps(json_obj) # returns JSON string

XML, XHTML, HTML FILES
AND STRINGS
Still hugely popular online, but JSON has essentially replaced XML for:
• Asynchronous browser ßà server calls

• Many (most?) newer web APIs

XML is a hierarchical markup language:
<tag attribute=“value1”>

<subtag>
Some content goes here

</subtag>
<openclosetag attribute=“value2” />

</tag>

You probably won’t see much XML, but you will see plenty of HTML, its
substantially less well-behaved cousin …

49

Example XML from: Zico Kolter

DOCUMENT OBJECT MODEL
(DOM)

XML encodes Document-Object
Models (“the DOM”)

The DOM is tree-structured.

Easy to work with! Everything is
encoded via links.

Can be huge, & mostly full of stuff
you don’t need …

50

SAX
SAX (Simple API for XML) is an alternative “lightweight” way to process XML.

A SAX parser generates a stream of events as it parses the XML file. The
programmer registers handlers for each one.

It allows a programmer to handle only parts of the data structure.

Example from John Canny

51

SCRAPING HTML IN PYTHON
HTML – the specification – is fairly pure
HTML – what you find on the web – is horrifying
We’ll use BeautifulSoup:
• conda install -c asmeurer beautiful-soup=4.3.2

52

import requests
from bs4 import BeautifulSoup

r = requests.get(“https://cmsc320.github.io”)

root = BeautifulSoup(r.content)
root.find(“div”, id=“schedule”)\

.find(“table”)\ # find all schedule

.find(“tbody”).findAll(“a”) # links for CMSC320

BUILDING A WEB SCRAPER IN
PYTHON
Totally not hypothetical situation:
• You really want to learn about data science, so you choose to download all of last

semester’s CMSC320 lecture slides to wallpaper your room …

• … but you now have carpal tunnel syndrome from clicking refresh on Piazza last
night, and can no longer click on the PDF and PPTX links.

Hopeless? No! Earlier, you built a scraper to do this!

Sort of. You only want PDF and PPTX files, not links to other websites or files.

53

lnks = root.find(“div”, id=“schedule”)\
.find(“table”)\ # find all schedule
.find(“tbody”).findAll(“a”) # links for CMSC320

REGULAR EXPRESSIONS
Given a list of URLs (strings), how do I find only those strings that end in *.pdf or
*.pptx?
• Regular expressions!
• (Actually Python strings come with a built-in endswith function.)

What about .pDf or .pPTx, still legal extensions for PDF/PPTX?
• Regular expressions!
• (Or cheat the system again: built-in string lower function.)

54

“this_is_a_filename.pdf”.endswith((“.pdf”, “.pptx”))

“tHiS_IS_a_FileNAme.pDF”.lower().endswith(
(“.pdf”, “.pptx”))

55

REGULAR EXPRESSIONS
Used to search for specific elements, or groups of elements, that match a pattern

Indispensable for data munging and wrangling

Many constructs to search a variety of different patterns

Many languages/libraries (including Python) allow “compiling”
Much faster for repeated applications of the regex pattern

https://blog.codinghorror.com/to-compile-or-not-to-compile/

56

REGULAR EXPRESSIONS
Used to search for specific elements, or groups of elements, that match a pattern

57

import re

Find the index of the 1st occurrence of “cmsc320”
match = re.search(r”cmsc320”, text)
print(match.start())

Does start of text match “cmsc320”?
match = re.match(r”cmsc320”, text)

Iterate over all matches for “cmsc320” in text
for match in re.finditer(r”cmsc320”, text):

print(match.start())

Return all matches of “cmsc320” in the text
match = re.findall(r”cmsc320”, text)

MATCHING MULTIPLE
CHARACTERS
Can match sets of characters, or multiple and more elaborate sets and sequences
of characters:
• Match the character ‘a’: a

• Match the character ‘a’, ‘b’, or ‘c’: [abc]

• Match any character except ‘a’, ‘b’, or ‘c’: [^abc]

• Match any digit: \d (= [0123456789] or [0-9])
• Match any alphanumeric: \w (= [a-zA-Z0-9_])

• Match any whitespace: \s (= [\t\n\r\f\v])

• Match any character: .

Special characters must be escaped: .^$*+?{}\[]|()

58

Thanks to: Zico Kolter

MATCHING SEQUENCES AND
REPEATED CHARACTERS

A few common modifiers (available in Python and most other high-level
languages; +, {n}, {n,} may not):
• Match character ‘a’ exactly once: a
• Match character ‘a’ zero or once: a?
• Match character ‘a’ zero or more times: a*
• Match character ‘a’ one or more times: a+
• Match character ‘a’ exactly n times: a{n}
• Match character ‘a’ at least n times: a{n,}
Example: match all instances of “University of <somewhere>” where <somewhere> is an
alphanumeric string with at least 3 characters:
• \s*University\sof\s\w{3,}

59

GROUPS
What if we want to know more than just “did we find a match” or “where is the first
match” …?

Grouping asks the regex matcher to keep track of certain portions – surrounded
by (parentheses) – of the match

\s*([Uu]niversity)\s([Oo]f)\s(\w{3,})

60

regex = r”\s*([Uu]niversity)\s([Oo]f)\s(\w{3,})”
m = re.search(regex, “university Of Maryland”)
print(m.groups())

('university', 'Of', 'Maryland')

SIMPLE EXAMPLE: PARSE AN
EMAIL ADDRESS
(?:(?:\r\n)?[\t])*(?:(?:(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?: \r\n)?[
\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[
\t])*))*@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\0 31]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[
\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+ (?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?: (?:\r\n)?[\t])*))*|(?:[^()<>@,;:\\".\[\] \000-
\031]+(?:(?:(?:\r\n)?[\t])+|\Z |(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n) ?[\t])*)*\<(?:(?:\r\n)?[\t])*(?:@(?:[^()<>@,;:\\".\[\] \000-
\031]+(?:(?:(?:\ r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n) ?[
\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*(?:,@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[
\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t]
)+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*) *:(?:(?:\r\n)?[\t])*)?(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+
|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r \n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?: \r\n)?[
\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*))*@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[
\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(? :(?:(?:\r\n)?[
\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(? :\r\n)?[\t])*))*\>(?:(?:\r\n)?[\t])*)|(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(? :(?:\r\n)?[
\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)? [\t]))*"(?:(?:\r\n)?[\t])*)*:(?:(?:\r\n)?[\t])*(?:(?:(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[
\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]| \\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<> @,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[
\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|" (?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*))*@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[
\t])+|\Z|(?=[\["()<>@,;:\\ ".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(? :[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[
\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*|(?:[^()<>@,;:\\".\[\] \000- \031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[
\t]))*"(?:(?:\r\n)?[\t])*)*\<(?:(?:\r\n)?[\t])*(?:@(?:[^()<>@,; :\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[
\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\" .\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*(?:,@(?:(?:\r\n)?[
\t])*(?:[^()<>@,;:\\".\ [\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\ r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\]
\000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\] |\\.)*\](?:(?:\r\n)?[\t])*))*)*:(?:(?:\r\n)?[\t])*)?(?:[^()<>@,;:\\".\[\] \0 00-\031]+(?:(?:(?:\r\n)?[
\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\ .|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@, ;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[
\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(? :[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*))*@(?:(?:\r\n)?[\t])* (?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[
\t])+|\Z|(?=[\["()<>@,;:\\". \[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[
\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*\>(?:(?:\r\n)?[\t])*)(?:,\s*(?:(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[
\t])+|\Z|(?=[\["()<>@,;:\\ ".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[
\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*))*@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t
])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(? :\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|
\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*|(?: [^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\
]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*)*\<(?:(?:\r\n) ?[\t])*(?:@(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["
()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n) ?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>
@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*(?:,@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,
;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\
".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*)*:(?:(?:\r\n)?[\t])*)? (?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".
\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*)(?:\.(?:(?: \r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\[
"()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t]) *))*@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])
+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\ .(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z
|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*\>(?:(?:\r\n)?[\t])*))*)?;\s*)

61

Mail::RFC822::Address Perl module for RFC 822

NAMED GROUPS
Raw grouping is useful for one-off exploratory analysis, but may get confusing
with longer regexes
• Much scarier regexes than that email one exist in the wild …

Named groups let you attach position-independent identifiers to groups in a regex
(?P<some_name> …)

62

regex = "\s*[Uu]niversity\s[Oo]f\s(?P<school>(\w{3,}))"
m = re.search(regex, “University of Maryland”)
print(m.group(‘school’))

'Maryland'

SUBSTITUTIONS
The Python string module contains basic functionality for find-and-replace
within strings:

For more complicated stuff, use regexes:

Can incorporate groups into the matching

63

”abcabcabc”.replace(“a”, ”X”)

‘XbcXbcXbc`

Thanks to: Zico Kolter

text = “I love Introduction to Data Science”
re.sub(r”Data Science”, r”Schmada Schmience”, text)

‘I love Introduction to Schmada Schmience`

re.sub(r”(\w+)\s([Ss]cience”, r”\1 \2hmience”, text)

COMPILED REGEXES
If you’re going to reuse the same regex many times, or if you
aren’t but things are going slowly for some reason, try
compiling the regular expression.
• https://blog.codinghorror.com/to-compile-or-not-to-compile/

Interested? CMSC330, CMSC430, CMSC452, talk to me.

64

Compile the regular expression “cmsc320”
regex = re.compile(r”cmsc320”)

Use it repeatedly to search for matches in text
regex.match(text) # does start of text match?
regex.search(text) # find the first match or None
regex.findall(text) # find all matches

DOWNLOADING A BUNCH OF
FILES

65

import re
import requests
from bs4 import BeautifulSoup
try:

from urllib.parse import urlparse
except ImportError:

from urlparse import urlparse

Import the modules

HTTP GET request sent to the URL url
r = requests.get(url)

Use BeautifulSoup to parse the GET response
root = BeautifulSoup(r.content)
lnks = root.find("div", id="schedule")\

.find("table")\

.find("tbody").findAll("a")

Get some HTML via HTTP

DOWNLOADING A BUNCH OF
FILES

66

Cycle through the href for each anchor, checking
to see if it's a PDF/PPTX link or not
for lnk in lnks:

href = lnk['href']

If it's a PDF/PPTX link, queue a download
if href.lower().endswith(('.pdf', '.pptx')):

Parse exactly what you want

urld = urlparse.urljoin(url, href)
rd = requests.get(urld, stream=True)

Write the downloaded PDF to a file
outfile = path.join(outbase, href)
with open(outfile, 'wb') as f:

f.write(rd.content)

Get some more data?!

THE DATA LIFECYCLE

67

Data
collection

Data
processing

Exploratory
analysis

&
Data viz

Analysis,
hypothesis
testing, &

ML

Insight &
Policy

Decision

NEXT CLASS:
NUMPY, SCIPY, AND DATAFRAMES

68

