INTRODUCTION TO DATA SCIENCE

JOHN P DICKERSON

Midterm Review - 10/27/2020
CMSC320
Tuesdays \& Thursdays
5:00pm - 6:15pm
(... or anytime on the Internet)

COMPUTER SCIENCE UNIVERSITY OF MARYLAND

ANNOUNCEMENTS

Mini-Project \#2 was due late last week!

- Deliverable was an .ipynb file submitted to ELMS, but moving forward this will be .pdf / .html files, for TA grading ease
- Some folks had trouble getting the .pdf export to render figures - that's okay, if we run into an issue grading, we'll ping you
- In the future: can export to .html and then convert to .pdf Mini-Project \#3 will be released after the midterm!
- Due before Thanksgiving (TBD)

PROJECT 1 GRADES ARE UPI

General comments:

People did really well!
We used a fairly strict rubric, but if you have a real bone to pick with your grade, please triage through TAs/office hours!

Comments for our sanity, moving forward:

- df. head (n) -- defaults to $\mathrm{n}=5$, use $\sim 10,20,50$ as needed
- Please label your pdf file something like <lastname>_<firstname>_project3.pdf
- E.g., dickerson_john_project3.pdf

MIDTERM: STRUCTURE

50 points $=25 \%$ of the total grade
Rough breakdown (may change a little):
10 points:

- 10 True/False questions, 1 point each

10 points:

- 5 multiple choice questions, 2 points each

30 points:

- 10 short answer questions, 3 points each

Compared to the CMSC320 midterm I posted from an earlier semester, this midterm is more qualitative.

QUICK MIDTERM REVIEW

As discussed in previous lectures and on Piazza, the midterm can cover:

- Up to and including last Thursday's lecture (10/22)
- Quizzes that were due on or before today
- Stuff that you should know from doing P1 and P2

Everything is online: https://cmsc320.github.io/
I know this is a lot of material.

- Rule of thumb: open up a slide deck
- Do you feel "comfortable" with the material?
- Test will be more qualitative than prior 1xx, 2xx, 3xx tests

QUICK MIDTERM REVIEW

DATA COLLECTION (DC) \& DATA PROCESSING (DP)

We talked about:

- Scraping data
- RESTful APIs
- Structured data formats (JSON, XML, etc)
- Regexes

Data manipulation via Numpy Stack (Numpy, Pandas, etc)

- Indexing, slicing, groups, joins, aggregate queries, etc

Tidy data + melting
Version control (just know how this works qualitatively) RDMS, a little bit of SQL
Entity resolution \& other data integration issues
Storing stuff as a graph, and manipulating it

DC: HTTP REQUESTS

https://www.google.com/?q=cmsc320\&tbs=qdr:m
Google
??????????

HTTP GET Request:

GET /?q=cmsc320\&tbs=qdr:m HTTP/1.1
Host: www.google.com
User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:10.0.1) Gecko/20100101 Firefox/10.0.1

```
params = { "q": "cmsc320", "tbs": "qdr:m" }
r = requests.get( "https://www.google.com",
    params = params )
```


DC: RESTFUL APIS

This class will just query web APIs, but full web APIs typically allow more.

Representational State Transfer (RESTful) APIs:

- GET: perform query, return data
- POST: create a new entry or object
- PUT: update an existing entry or object
- DELETE: delete an existing entry or object

Can be more intricate, but verbs ("put") align with actions

DC: PANDAS: SERIES

index values

- Subclass of numpy.ndarray
- Data: any type
- Index labels need not be ordered
- Duplicates possible but result in reduced functionality

DC: PANDAS: DATAFRAME

- Each column can have a different type
- Row and Column index
- Mutable size: insert and delete columns
- Note the use of word "index" for what we called "key"
- Relational databases use "index" to mean something else
- Non-unique index values allowed
- May raise an exception for some operations

DC: STORING A
 GRAPH

Three main ways to represent a graph in memory:

- Adjacency lists
- Adjacency dictionaries
- Adjacency matrix

The storage decision should be made based on the expected use case of your graph:

- Static analysis only?
- Frequent updates to the structure?
- Frequent updates to semantic information?

DC: ADJACENCY LISTS

For each vertex, store an array of the vertices it connects to

Vertex	Neighbors
A	$[C]$
B	$[C, D]$
C	$[A]$
D	[]

Pros: ????????

- Iterate over all outgoing edges; easy to add an edge

Cons: ????????

- Checking for the existence of an edge is $\mathrm{O}(|\mathrm{V}|)$, deleting is hard

DC: ADJACENCY DICTIONARIES

For each vertex, store a dictionary of vertices it connects to

Vertex	Neighbors
A	$\{C: 1.0\}$
B	$\{C: 1.0$, D: 1.0$\}$
C	$\{A: 1.0\}$
D	$\}$

Pros: ?????????

- $\mathrm{O}(1)$ to add, remove, query edges

Cons: ?????????

- Overhead (memory, caching, etc)

DC: ADJACENCY MATRIX

Store the connectivity of the graph in a matrix

Cons: ?????????

- $\mathrm{O}\left(|\mathrm{V}|^{2}\right)$ space regardless of the number of edges

Almost always stored as a sparse matrix

DP: SELECT/SLICING

Select only some of the rows, or some of the columns, or a combination

ID	age	wgt kg	hgt cm	Only columns		12.2
1	12.2	42.3	145.1	and Age		11.0
2	11.0	40.8	143.8			15.6
3	15.6	65.3	165.3			35.1
4	35.1	84.2	185.8			
Only rows with wgt > 41				Bo		age
ID	age	wgt_kg	hgt_cm			12.2
1	12.2	42.3	145.1			15.6
3	15.6	65.3	165.3			
4	35.1	84.2	185.8			

DP: AGGREGATE/REDUCE

Combine values across a column into a single value

DP: MAP

Apply a function to every row, possibly creating more or fewer columns

ID	Address					
1	College Park, MD, 20742					
2	Washington, DC, 20001					
3	Silver Spring, MD 20901	\longrightarrow	ID	City	State	Zipcode
:---	:---	:---	:---			
1	College Park	MD	20742			
2	Washington	DC	20001			
3	Silver Spring	MD	20901			

Variations that allow one row to generate multiple rows in the output (sometimes called "flatmap")

DP: GROUP BY

Group tuples together by column/dimension

ID	A	B	C
1	foo	3	6.6
2	bar	2	4.7
3	foo	4	3.1
4	foo	3	8.0
5	bar	1	1.2
6	bar	2	2.5
7	foo	4	2.3
8	foo	3	8.0

By 'A'

ID	B	C
1	3	6.6
3	4	3.1
4	3	8.0
7	4	2.3
8	3	8.0

A $=$ bar		
ID	B	C
2	2	4.7
5	1	1.2
6	2	2.5

$$
B=1
$$

DP: GROUP BY

Group tuples together by column/dimension

ID	A	B	C
1	foo	3	6.6
2	bar	2	4.7
3	foo	4	3.1
4	foo	3	8.0
5	bar	1	1.2
6	bar	2	2.5
7	foo	4	2.3
8	foo	3	8.0

ID	A	C
5	bar	1.2

ID	A	C
2	bar	4.7
6	bar	2.5

By 'B'

ID	A	C
1	foo	6.6
4	foo	8.0
8	foo	8.0
B $=4$		
ID	A	C
3	foo	3.1
7	foo	2.3

$$
A=\text { bar, } B=1
$$

DP: GROUP BY

ID	C
5	1.2

Group tuples together by column/dimension

ID	A	B	C
1	foo	3	6.6
2	bar	2	4.7
3	foo	4	3.1
4	foo	3	8.0
5	bar	1	1.2
6	bar	2	2.5
7	foo	4	2.3
8	foo	3	8.0

$\mathrm{A}=\mathrm{bar}, \mathrm{B}=2$

ID	C
2	4.7
6	2.5

$A=$ foo, $B=3$
By 'A', 'B'

ID	C
1	6.6
4	8.0
8	8.0

$A=$ foo, $B=4$

ID	C
3	3.1
7	2.3

DP: GROUP BY AGGREGATE

Compute one aggregate Per group

ID	A	B	C
1	foo	3	6.6
2	bar	2	4.7
3	foo	4	3.1
4	foo	3	8.0
5	bar	1	1.2
6	bar	2	2.5
7	foo	4	2.3
8	foo	3	8.0

ID	A	C
2	bar	4.7
6	bar	2.5

$B=3$

ID	A	c	
1	foo	6.6	Sum (C)
			22.6
4	foo	8.0	
8	foo	8.0	$B=4$
$\mathrm{B}=4$			Sum (C)
ID	A	C	5.4
3	foo	3.1	
7	foo	2.3	

DP: GROUP B AGGREGATE

Final result usually seen

	tabl				$B=2$		
ID	A	B	C		Sum (C)		
1	foo	3	6.6		7.2		SUM(C)
2	bar	2	4.7				1.2
3	foo	4	31		$\mathrm{B}=3$		7.2
3	foo		8.1	Group by 'B'			22.6
4	foo	3	8.0	Sum on C	Sum (C)		5.4
5	bar	1	1.2		22.6		
6	bar	2	2.5				
7	foo	4	2.3				
8	foo	3	8.0		Sum (C)		
					5.4		

DP: UNION/INTERSECTION/DIFFERENCE

Set operations - only if the two tables have identical attributes/columns

ID	A	B	C
1	foo	3	6.6
2	bar	2	4.7
3	foo	4	3.1
4	foo	3	8.0

ID	A	B	C
5	bar	1	1.2
6	bar	2	2.5
7	foo	4	2.3
8	foo	3	8.0

Similarly Intersection and Set Difference manipulate tables as Sets

ID	A	\mathbf{B}	C
1	foo	3	6.6
2	bar	2	4.7
3	foo	4	3.1
4	foo	3	8.0
5	bar	1	1.2
6	bar	2	2.5
7	foo	4	2.3
8	foo	3	8.0

IDs may be treated in different ways, resulting in somewhat different behaviors

DP: MERGE OR JOIN

Combine rows/tuples across two tables if they have the same key

ID	A	\mathbf{B}
1	foo	3
2	bar	2
3	foo	4
4	foo	3

$\mathbf{I D}$	\mathbf{C}					
1	1.2					
2	2.5					
3	2.3					
5	8.0	\longrightarrow	$\mathbf{I D}$	\mathbf{A}	\mathbf{B}	\mathbf{C}
:---	:---	:---	:---			
1	foo	3	1.2			
2	bar	2	2.5			
3	foo	4	2.3			

What about IDs not present in both tables?
Often need to keep them around
Can "pad" with NaN

DP: MERGE OR JOIN

Combine rows/tuples across two tables if they have the same key
Outer joins can be used to "pad" IDs that don't appear in both tables
Three variants: LEFT, RIGHT, FULL
SQL Terminology -- Pandas has these operations as well

ID	A	B
1	foo	3
2	bar	2
3	foo	4
4	foo	3

D	ID	C	D	A	B	C
	1	1.2	1	foo	3	1.2
	2	2.5	2	bar	2	2.5
	3	2.3	3	foo	4	2.3
	5	8.0	4	foo	3	NaN
			5	NaN	NaN	8.0

DP: GOOGLE IMAGE SEARCH ONE SLIDE SQL JOIN VISUAL

FULL JOIN

DC/DP: HOW A RELATIONAL DB FITS INTO YOUR WORKFLOW

Persists!

SQLite CLI \& GUI Frontend

DP: ADDITIONAL STUFF

Data integration

- Extraction, schema alignment \& mapping, querying over multiple schema / global schema
Data quality issues
- Single- vs multi-source quality issues

Data cleaning

- Outlier detection, constraint-based cleaning

Entity resolution (~part of data cleaning)

- Deduplication, record linkage, reference matching
- Fuzzy matching, etc.

EDA \& VIZ

Missing data

- MCAR
- MAR
- MNAR
- Single \& multiple imputation

Analysis

- Basic linear regression
- Summary statistics / robust statistics
- Variance, stdev, covariance, Pearson's correlation coefficient
- Hypothesis testing
- Bayes' rule.

EDA: MISSING DATA

Missing data is information that we want to know, but don't
It can come in many forms, e.g.:

- People not answering questions on surveys
- Inaccurate recordings of the height of plants that need to be discarded
- Canceled runs in a driving experiment due to rain

Could also consider missing columns (no collection at all) to be missing data ...

EDA: COMPLETE CASE ANALYSIS

Delete all tuples with any missing values at all, so you are left only with observations with all variables observed

```
# Clean out rows with nil values
df = df.dropna()
```

Default behavior for libraries for analysis (e.g., regression)

- We'll talk about this much more during the Stats/ML lectures

This is the simplest way to handle missing data. In some cases, will work fine; in others, ?????????????:

- Loss of sample will lead to variance larger than reflected by the size of your data
- May bias your sample

EDA: YOUR SAMPLE

Hair Color	$>6 f t$	Grade
Red	Y	A
Brown	N	A
Black	N	B
Black	Y	A
Brown	Y	
Brown	Y	
Brown	N	
Black	Y	B
Black	Y	B
Brown	N	A
Black	N	
Brown	N	C
Red	Y	
Red	N	A
Brown	Y	A
Black	Y	A

Summary:

- 7 students received As
- 3 students received Bs
- 1 student received a C

Nobody is failing!

- But 5 students did not reveal their grade ...

EDA: WHAT INFLUENCES A DATA POINT'S PRESENCE?

Same dataset, but the values are replaced with a " 0 " if the data point is observed and " 1 " if it is not

Question: for any one of these data points, what is the probability that the point is equal to " 1 " ...?

What type of missing-ness do the grades exhibit?

Hair Color	$>6 \mathbf{f t}$	Grade
0	0	0
0	0	0
0	0	0
0	0	0
0	0	1
0	0	1
0	0	1
0	0	0
0	0	0
0	0	0
0	0	1
0	0	0
0	0	1
0	0	0
0	0	0
0	0	0

EDA: MCAR: MISSING COMPLETELY AT RANDOM

If this probability is not dependent on any of the data, observed or unobserved, then the data is Missing Completely at Random (MCAR)

Suppose that X is the observed data and Y is the unobserved data. Call our "missing matrix" R

Then, if the data are MCAR, $P(R \mid X, Y)=$??????????

$$
P(R \mid X, Y)=P(R)
$$

Probability of those rows missing is independent of anything.

EDA: MAR: MISSING AT

RANDOM

Missing at Random (MAR): probability of missing data is dependent on the observed data but not the unobserved data Suppose that X is the observed data and Y is the unobserved data. Call our "missing matrix" R
Then, if the data are MAR, $\mathrm{P}(\mathrm{R} \mid \mathrm{X}, \mathrm{Y})=$??????????

$$
P(R \mid X, Y)=P(R \mid X)
$$

Not exactly random (in the vernacular sense).

- There is a probabilistic mechanism that is associated with whether the data is missing
- Mechanism takes the observed data as input

EDA: MNAR: MISSING NOT AT RANDOM

MNAR: missing-ness has something to do with the missing data itself

Examples: ??????????

- Do you binge drink? Do you have a trust fund? Do you use illegal drugs? What is your sexuality? Are you depressed?
Said to be "non-ignorable":
- Missing data mechanism must be considered as you deal with the missing data
- Must include model for why the data are missing, and best guesses as to what the data might be

EDA: BACK TO IRIBE

Is the the missing data:

- MCAR;
- MAR; or
- MNAR?
???????????

Hair Color	$>6 f t$	Grade
Red	Y	A
Brown	N	A
Black	N	B
Black	Y	A
Brown	Y	
Brown	Y	
Brown	N	
Black	Y	B
Black	Y	B
Brown	N	A
Black	N	
Brown	N	C
Red	Y	
Red	N	A
Brown	Y	A
Black	Y	A

EDA: ADD A VARIABLE

Bring in the GPA:

Does this change anything?

Hair Color	GPA	Gender	Grade
Red	3.4	M	A
Brown	3.6	F	A
Black	3.7	F	B
Black	3.9	M	A
Brown	2.5	M	
Brown	3.2	M	
Brown	3.0	F	
Black	2.9	M	B
Black	3.3	M	B
Brown	4.0	F	A
Black	3.65	F	
Brown	3.4	F	C
Red	2.2	M	
Red	3.8	F	A
Brown	3.8	M	A
Black	3.67	M	A

EDA: MULTIPLE IMPUTATION PROCESS

ANALYSIS: IMPORTANCE OF VERTICES

Not all vertices are equally important
Centrality Analysis:

- Find out the most important node(s) in one network
- Used as a feature in classification, for visualization, etc ...

Commonly-used Measures

- Degree Centrality
- Closeness Centrality
- Betweenness Centrality
- Eigenvector Centrality

ANALYSIS: DEGREE CENTRALITY

The importance of a vertex is determined by the number of vertices adjacent to it

- The larger the degree, the more important the vertex is
- Only a small number of vertex have high degrees in many reallife networks
Degree Centrality: $\quad C_{D}\left(v_{i}\right)=d_{i}=\sum_{j} A_{i j}$
Normalized Degree Centrality: $\quad C_{D}^{\prime}\left(v_{i}\right)=d_{i} /(n-1)$

For vertex 1 , degree centrality is 3 ;
Normalized degree centrality is $3 /(9-1)=3 / 8$.

ANALYSIS: BETWEENNESS CENTRALITY

Table 2.2:			
$\sigma_{s t}(4) / \sigma_{s t}$			
$t=5$	$1 / 1$	$2 / 2$	$1 / 1$
$t=6$	$1 / 1$	$2 / 2$	$1 / 1$
$t=7$	$2 / 2$	$4 / 4$	$2 / 2$
$t=8$	$2 / 2$	$4 / 4$	$2 / 2$
$t=9$	$2 / 2$	$4 / 4$	$2 / 2$

$\sigma_{s t}$: The number of shortest paths between s and t
$\sigma_{s t}\left(v_{i}\right)$: The number of shortest paths between s and t that pass v_{i}

$$
C_{B}\left(v_{i}\right)=\sum_{v_{s} \neq v_{i} \neq v_{t} \in V, s<t} \frac{\sigma_{s t}\left(v_{i}\right)}{\sigma_{s t}}
$$

What is the betweenness centrality for node 4 ?????????

ANALYSIS: TERM FREQUENCY

Term frequency: the number of times a term appears in a specific document

- $\mathrm{tf}_{\mathrm{ij}}$: frequency of word j in document i

This can be the raw count (like in the BOW in the last slide):

- $\mathrm{tf}_{i j} \in\{0,1\}$ if word j appears or doesn't appear in doc i
- $\log \left(1+\mathrm{tf}_{\mathrm{ij}}\right)$ - reduce the effect of outliers
- $\mathrm{tf}_{i j} /$ max $_{\mathrm{j}} \mathrm{tf}_{i j}$ - normalize by document i's most frequent word

What can we do with this?

- Use as features to learn a classifier $w \rightarrow y$...!

ANALYSIS: INVERSE DOCUMENT FREQUENCY

Recall:

- $\mathrm{tt}_{i j}$: frequency of word j in document i

Any issues with this ??????????

- Term frequency gets overloaded by common words

Inverse Document Frequency (IDF): weight individual words negatively by how frequently they appear in the corpus:

$$
\operatorname{idf}_{j}=\log \left(\frac{\# \text { documents }}{\# \text { documents with word } j}\right)
$$

IDF is just defined for a word j , not word/document pair j, i

ANALYSIS: TF-IDF

How do we use the IDF weights?
Term frequency inverse document frequency (TF-IDF):

- TF-IDF score: $\mathrm{tf}_{\mathrm{ij}} \times \mathrm{idf}_{j}$

This ends up working better than raw scores for classification and for computing similarity between documents.

ANALYSIS: SIMILARITY BETWEEN DOCUMENTS

Given two documents x and y, represented by their TF-IDF vectors (or any vectors), the cosine similarity is:

$$
\operatorname{similarity}(\mathbf{x}, \mathbf{y})=\frac{\mathbf{x}^{\top} \mathbf{y}}{|\mathbf{x}| \times|\mathbf{y}|}
$$

Formally, it measures the cosine of the angle between two vectors x and y :

- $\cos \left(0^{\circ}\right)=1, \cos \left(90^{\circ}\right)=0 \quad$??????????

Similar documents have high cosine similarity; dissimilar documents have low cosine similarity.

