
INTRODUCTION TO
DATA SCIENCE
JOHN P DICKERSON

Lecture #21 – 11/10/2020
Lecture #22 – 11/12/2020

CMSC320
Tuesdays & Thursdays
5:00pm – 6:15pm
(… or anytime on the Internet)

ANNOUNCEMENTS

2

Mini-Project #2 will be graded by the end of the week
Midterm is being graded now
Mini-Project #3 was released late last week
• Due slightly before Thanksgiving break

• Please remember to put headings/subheadings in your .ipynb
à .pdf export corresponding to questions/problems.

3

TODAY’S LECTURE
Decision Trees & Basic Model Evaluation
• What is a decision tree, and what can it represent?

• How do we learn tree structures?

• How do we tell if it’s any good in practice?

BIG THANKS to Bart Selman’s CS4700 lecture.

4

THE CANONICAL MACHINE
LEARNING PROBLEM
At the end of the day, we want to learn a hypothesis function
that predicts the actual outputs well.

4

Given an hypothesis
function and loss function

Over all possible
parameterizations

And over all your
training data*

Choose the parameterization
that minimizes loss!

*Not actually what we want – want it over the world of inputs – will discuss later …

5

Big Picture of Learning

Learning can be seen as fitting a function to the data. We can consider
different target functions and therefore different hypothesis spaces.
Examples:
Propositional if-then rules
Decision Trees
First-order if-then rules
First-order logic theory
Linear functions
Polynomials of degree at most k
Neural networks
Java programs
Turing machine
Etc

Tradeoff between expressiveness of
a hypothesis space and the

complexity of finding simple, consistent hypotheses
within the space.

A learning problem
is realizable if its hypothesis space

contains the true function.

6

Decision Tree Learning

Input: an object or situation described by a set of attributes (or features)
Output: a “decision” – the predicts output value for the input.

The input attributes and the outputs can be discrete or continuous.

We will focus on decision trees for Boolean classification:
each example is classified as positive or negative.

Task:
– Given: collection of examples (x, f(x))
– Return: a function h (hypothesis) that approximates f
– h is a decision tree

New York Times
April 16, 2008

Can we learn
how counties vote?

Decision Trees:
a sequence of tests.
Representation very natural for
humans.
Style of many “How to” manuals
and trouble-shooting
procedures.

8

Note: order of tests
matters (in general)!
When not?

9

Decision tree
learning approach
can construct tree
(with test thresholds)
from example counties.

10

Decision Tree
What is a decision tree?

A tree with two types of nodes:

Decision nodes
Leaf nodes

Decision node: Specifies a choice or test of
some attribute with 2 or more alternatives;
à every decision node is part of a path to a
leaf node

Leaf node: Indicates classification of an
example

11

Inductive Learning Example
Food

(3)
Chat
(2)

Fast
(2)

Price
(3)

Bar
(2)

BigTip

great yes yes normal no yes
great no yes normal no yes
mediocre yes no high no no
great yes yes normal yes yes

Instance Space X: Set of all possible objects described by attributes
(often called features).

Target Function f: Mapping from Attributes to Target Feature
(often called label) (f is unknown)

Hypothesis Space H: Set of all classification rules hi we allow.

Training Data D: Set of instances labeled with Target Feature

Etc.

Decision Tree Example: “BigTip”

Food

Price

Speedy no

yes no

no

yes

great
mediocre

yuck

yes no

adequate high

Is the decision tree we learned consistent?

Yes, it agrees with all the examples!

Our data

Data: Not all 2x2x3 = 12 tuples
Also, some repeats! These are
literally “observations.”

13

Learning decision trees:
An example

Problem: decide whether to wait for a table at a restaurant. What attributes
would you use?

Attributes used by R&N
1. Alternate: is there an alternative restaurant nearby?
2. Bar: is there a comfortable bar area to wait in?
3. Fri/Sat: is today Friday or Saturday?
4. Hungry: are we hungry?
5. Patrons: number of people in the restaurant (None, Some, Full)
6. Price: price range ($, $$, $$$)
7. Raining: is it raining outside?
8. Reservation: have we made a reservation?
9. Type: kind of restaurant (French, Italian, Thai, Burger)
10. WaitEstimate: estimated waiting time (0-10, 10-30, 30-60, >60)

Goal predicate: WillWait?

What about
restaurant name?

It could be great for
generating a small tree
but …

It doesn’t generalize!

14

Attribute-based representations

Examples described by attribute values (Boolean, discrete, continuous)
E.g., situations where I will/won't wait for a table:

Classification of examples is positive (T) or negative (F)

12 examples
6 +
6 -

15

Decision trees
One possible representation for hypotheses
E.g., here is a tree for deciding whether to wait:

16

Expressiveness of Decision Trees

Any particular decision tree hypothesis for WillWait goal predicate can be
seen as a disjunction of a conjunction of tests, i.e., an assertion of the form:

"s WillWait(s) « (P1(s) Ú P2(s) Ú … Ú Pn(s))

Where each condition Pi(s) is a conjunction of tests corresponding
to the path from the root of the tree to a leaf with a positive outcome.

17

Expressiveness

Decision trees can express any Boolean function of the input attributes.
E.g., for Boolean functions, truth table row → path to leaf:

18

Number of Distinct Decision Trees

How many distinct decision trees with 10 Boolean attributes?
= number of Boolean functions with 10 propositional symbols

Input features Output

0 0 0 0 0 0 0 0 0 0 0/1
0 0 0 0 0 0 0 0 0 1 0/1
0 0 0 0 0 0 0 0 1 0 0/1
0 0 0 0 0 0 0 1 0 0 0/1
…
1 1 1 1 1 1 1 1 1 1 0/1

How many entries does this table have?

210

So how many Boolean functions
with 10 Boolean attributes are there,

given that each entry can be 0/1?

= 2210

19

Hypothesis spaces

How many distinct decision trees with n Boolean attributes?
= number of Boolean functions

= number of distinct truth tables with 2n rows

With 6 Boolean attributes, there are 18,446,744,073,709,551,616
possible trees!

= 22n

Many calculators can’t handle 10 attributes J!

E.g. how many Boolean functions on 6 attributes? A lot…

There are even more decision trees! (see later)

20

Decision trees can express any Boolean function.
Goal: Finding a decision tree that agrees with training set.

We could construct a decision tree that has one path to a leaf for each example,
where the path tests sets each attribute value to the value of the example.

Overall Goal: get a good classification with a small number of tests.

Decision tree learning Algorithm

Problem: This approach would just memorize example.
How to deal with new examples? It doesn’t generalize!

We want a compact/smallest tree.
But finding the smallest tree consistent with the examples is NP-hard!

(But sometimes hard to avoid --- e.g. parity function, 1, if an even number
of inputs, or majority function, 1, if more than half of the inputs are 1).

What is the problem with this from a learning point of view?

21

Expressiveness:
Boolean Function with 2 attributes à DTs

A

B B

F FT F

T F

T FTF

A

B B

T FTF

T F

T FTF

A

B B

T FT T

T F

T FTF

A

B B

T TF T

T F

T FTF

A

B B

F FT T

T F

T FTF

A

B B

F TF T

T F

T FTF

A

B B

F TF F

T F

T FTF

A

B B

T TF F

T F

T FTF

AND OR XOR A

NAND NOR XNOR NOT A

222

22

Expressiveness:
2 attribute à DTs

A

B F

T F

T F

T F

A

B B

T FTF

T F

T FTF

A

B

T F

T
T F

FT

A

B T

F T

T F

T F

A

FT
T F

A

B B

F TF T

T F

T FTF

A

B

F T

F
T F

FT

A

TF
T F

AND OR XOR

NAND NOR

A

XNOR NOT A

222

23

A

B B

F FF T

T F

T FTF

A

B B

T FT F

T F

T FTF

A

B B

T FF F

T F

T FTF

A

B B

T TT F

T F

T FTF

A

B B

F TF T

T F

T FTF

A

B B

T TT T

T F

T FTF

A

B B

F TT T

T F

T FTF

A

B B

F FF F

T F

T FTF

A AND-NOT B NOT A AND B B

A OR NOT B NOR A OR B

TRUE

FALSE
NOT B

Expressiveness:
2 attribute à DTs 222

24

A

B F

F T

T F

T F

A

B

T F

F
T F

FT

A

B T

T F

T F

T F

T

A

B

F T

T
T F

FT

F

A AND-NOT B NOT A AND B B

A OR NOT B NOR A OR B

TRUE

FALSE
NOT B

Expressiveness:
2 attribute à DTs 222

B

FT
T F

B

TF
T F

25

Basic DT Learning Algorithm

Goal: find a small tree consistent with the training examples

Idea: (recursively) choose "most significant" attribute as root of (sub)tree;
Use a top-down greedy search through the space of possible decision
trees.
Greedy because there is no backtracking. It picks highest values first.

Variations of known algorithms ID3, C4.5 (Quinlan -86, -93)

Top-down greedy construction
– Which attribute should be tested?

• Heuristics and Statistical testing with current data
– Repeat for descendants

(ID3 Iterative Dichotomiser 3)

“most significant”
In what sense?

Big Tip Example

Let’s build our decision tree
starting with the attribute Food,
(3 possible values: g, m, y).

1087431

2 5 6 9

10 examples:

6+

4-

Attributes:
•Food with values g,m,y
•Speedy? with values y,n
•Price, with values a, h

Top-Down Induction of Decision Tree:
Big Tip Example

10 examples:

Food
y

g
m

How many + and - examples
per subclass, starting with y?

6+
4-

1087431

2 5 6 9

6

1087431

2

5 9

No No

Let’s consider next
the attribute Speedy

Speedy
y n

108731

4

2Yes Price
a h

4 2
Yes No

Node “done”
when uniform
label or “no
further
uncertainty.”

28

Top-Down Induction
of DT (simplified)

TDIDF(D,cdef)

IF(all examples in D have same class c)
– Return leaf with class c (or class cdef, if D is empty)

ELSE IF(no attributes left to test)
– Return leaf with class c of majority in D

ELSE
– Pick A as the “best” decision attribute for next node
– FOR each value vi of A create a new descendent of node

•
• Subtree ti for vi is TDIDT(Di,cdef)

– RETURN tree with A as root and ti as subtrees

} v valuehas x ofA attribute :D y),x{(D ii
!!

Î=

)}y,x(,),y,x{(D nn11
!!

…=Training Data:

Yes

29

Picking the Best Attribute to Split
Ockham’s Razor:

– All other things being equal, choose the simplest explanation
Decision Tree Induction:

– Find the smallest tree that classifies the training data correctly
Problem

– Finding the smallest tree is computationally hard L!
Approach

– Use heuristic search (greedy search)

Key Heuristics:
– Pick attribute that maximizes information (Information Gain)

i.e. “most informative”
– Other statistical tests

30

Attribute-based representations

Examples described by attribute values (Boolean, discrete, continuous)
E.g., situations where I will/won't wait for a table:

Classification of examples is positive (T) or negative (F)

12 examples
6 +
6 -

31

Choosing an attribute:
Information Gain

Which one should we pick?

A perfect attribute would ideally divide the
examples into sub-sets that are all positive or all negative…
i.e. maximum information gain.

Is this a good attribute
to split on?

Goal: trees with short paths to leaf nodes

32

Information Gain

Most useful in classification
– how to measure the ‘worth’ of an attribute information gain
– how well attribute separates examples according to their

classification
Next

– precise definition for gain

Shannon and Weaver 49

à measure from Information Theory

One of the most successful and impactful
mathematical theories known.

33

Information

“Information” answers questions.

The more clueless I am about a question, the more information
the answer to the question contains.

Example – fair coin à prior <0.5,0.5>

By definition Information of the prior (or entropy of the prior):
I(P1,P2) = - P1 log2(P1) –P2 log2(P2) =
I(0.5,0.5) = -0.5 log2(0.5) – 0.5 log2(0.5) = 1

We need 1 bit to convey the outcome of the flip of a fair coin.

Why does a biased coin have less information?
(How can we code the outcome of a biased coin sequence?)

Scale: 1 bit = answer to Boolean question with prior <0.5, 0.5>

34

Information
(or Entropy)

Information in an answer given possible answers v1, v2, … vn:

Example – biased coin à prior <1/100,99/100>

I(1/100,99/100) = -1/100 log2(1/100) –99/100 log2(99/100)
= 0.08 bits (so not much information gained from “answer.”)

Example – fully biased coin à prior <1,0>

I(1,0) = -1 log2(1) – 0 log2(0) = 0 bits

0 log2(0) =0
i.e., no uncertainty left in source!

(Also called entropy of the prior.)

35

Shape of Entropy Function

Roll of an unbiased die

The more uniform the probability distribution,
the greater is its entropy.

0

1

0 1/2 1 p

36

Information or
Entropy

Information or Entropy measures the “randomness” of an arbitrary collection of
examples.

We don’t have exact probabilities but our training data provides an estimate of the
probabilities of positive vs. negative examples given a set of values for the
attributes.
For a collection S, entropy is given as:

For a collection S having positive and negative examples

p - # positive examples;
n - # negative examples

37

Attribute-based representations
Examples described by attribute values (Boolean, discrete, continuous)
E.g., situations where I will/won't wait for a table:

Classification of examples is positive (T) or negative (F)

12 examples
6 +
6 -

p = n = 6; I(0.5,0.5) = -0.5 log2(0.5) –0.5 log2(0.5) = 1

So, we need 1 bit of info to classify a randomly picked example,
assuming no other information is given about the example.

What’s the entropy
of this collection of
examples?

38

Choosing an attribute:
Information Gain

Intuition: Pick the attribute that reduces the entropy (the uncertainty) the
most.

So we measure the information gain after testing a given attribute A:

Remainder(A) à gives us the remaining uncertainty
after getting info on attribute A.

39

Choosing an attribute:
Information Gain

Remainder(A)

à gives us the amount information we still need after testing on A.

Assume A divides the training set E into E1, E2, … Ev, corresponding to
the different v distinct values of A.

Each subset Ei has pi positive examples and ni negative examples.

So for total information content, we need to weigh the contributions of the
different subclasses induced by A

Weight (relative size) of each subclass

40

Choosing an attribute:
Information Gain

Measures the expected reduction in entropy. The higher the Information Gain (IG),
or just Gain, with respect to an attribute A , the more is the expected reduction in
entropy.

where Values(A) is the set of all possible values for attribute A,
Sv is the subset of S for which attribute A has value v.

Weight of each subclass

41

Interpretations of gain

Gain(S,A)
– expected reduction in entropy caused by knowing A
– information provided about the target function value given the

value of A
– number of bits saved in the coding a member of S knowing the

value of A

Used in ID3 (Iterative Dichotomiser 3) Ross Quinlan

42

Information gain

For the training set, p = n = 6, I(6/12, 6/12) = 1 bit

Consider the attributes Type and Patrons:

Patrons has the highest IG of all attributes and so is chosen by the
DTL algorithm as the root.

What if we used attribute “example label” uniquely
specifying the answer? Info gain? Issue?
High branching: can correct with “info gain ratio”

Info gain?

43

Example contd.

Decision tree learned from the 12 examples:

Substantially simpler than “true” tree ---
but a more complex hypothesis isn’t justified
from just the data.

“personal R&N Tree”

44

Inductive Bias

Roughly: prefer
– shorter trees over deeper/more complex ones

• E.g., Occam’s Razor
– ones with high gain attributes near root

Difficult to characterize precisely
– attribute selection heuristics
– interacts closely with given data

45

Evaluation Methodology
General for Machine Learning

46

Evaluation Methodology

Standard methodology (“Holdout Cross-Validation”):
1. Collect a large set of examples.
2. Randomly divide collection into two disjoint sets: training set and test set.
3. Apply learning algorithm to training set generating hypothesis h
4. Measure performance of h w.r.t. test set (a form of cross-validation)
à measures generalization to unseen data

Important: keep the training and test sets disjoint! “No peeking”!
Note: The first two questions about any learning result: Can you describe
your training and your test set? What’s your error on the test set?

How to evaluate the quality of a learning algorithm, i.e.,:
How good are the hypotheses produced by the learning algorithm?
How good are they at classifying unseen examples?

47

Peeking
Example of peeking:

We generate four different hypotheses – for example by using different
criteria to pick the next attribute to branch on.

We test the performance of the four different hypothesis on the test set and
we select the best hypothesis.

Voila: Peeking occurred! Why?
The hypothesis was selected on the basis of its performance on the test set,

so information about the test set has leaked into the learning algorithm.

So a new (separate!) test set would be required!

Note: In competitions, such as the “Netflix $1M challenge,”
test set is not revealed to the competitors. (Data is held back.)

Test/Training Split

Real-world Process

(x1,y1), …, (xn,yn) Learner (x1,y1),…(xk,yk)
Training Data Dtrain Test Data Dtest

split randomly split randomly

hDtrain

Data D

drawn randomly

Measuring Prediction Performance

50

Performance Measures

Error Rate
– Fraction (or percentage) of false predictions

Accuracy
– Fraction (or percentage) of correct predictions

Precision/Recall
Example: binary classification problems (classes pos/neg)
– Precision: Fraction (or percentage) of correct predictions among all

examples predicted to be positive
– Recall: Fraction (or percentage) of correct predictions among all

real positive examples
(Can be generalized to multi-class case.)

51

Learning Curve Graph

Learning curve graph

average prediction quality – proportion correct on test set –
as a function of the size of the training set..

Pr
ed

ic
tio

n
qu

al
ity

:
Av

er
ag

e
Pr

op
or

tio
n

co
rr

ec
t o

n
te

st
 se

t

Restaurant Example:
Learning Curve

As the training set increases,
so does the quality of prediction:

à“Happy curve” J!

à the learning algorithm is able to capture
the pattern in the data

On test set

53

Precision vs. Recall

Precision
– # of true positives / (# true positives + # false positives)

Recall
– # of true positives / (# true positives + # false negatives)

A precise classifier is selective
A classifier with high recall is inclusive

54

Precision-Recall curves

Precision

Recall

Measure Precision vs Recall as the classification
boundary is tuned

Better learning
performance

55

Precision-Recall curves

Precision

Recall

Measure Precision vs Recall as the classification
boundary is tuned

Learner A

Learner B

Which learner is better?

56

Area Under Curve

Precision

Recall

AUC-PR: measure the area under the precision-recall
curve

AUC=0.68

57

AUC metrics

A single number that measures “overall” performance across multiple
thresholds
– Useful for comparing many learners
– “Smears out” PR curve

Note training / testing set dependence

58

How well does it work?

Many case studies have shown that decision trees are at least as accurate
as human experts.

– A study for diagnosing breast cancer had humans correctly
classifying the examples 65% of the time, and the decision
tree classified 72% correct.

– British Petroleum designed a decision tree for gas-oil
separation for offshore oil platforms that replaced an
earlier rule-based expert system.

– Cessna designed an airplane flight controller using 90,000
examples and 20 attributes per example.

59

Summary

Decision tree learning is a particular case of supervised learning,

For supervised learning, the aim is to find a simple hypothesis
approximately consistent with training examples

Decision tree learning using information gain

Learning performance = prediction accuracy measured on test set

60

Extensions of the
Decision Tree Learning Algorithm

(Briefly)

Noisy data
Overfitting and Model Selection
Cross Validation
Missing Data (R&N, Section 18.3.6)
Using gain ratios (R&N, Section 18.3.6)
Real-valued data (R&N, Section 18.3.6)
Generation of rules and pruning

61

Noisy data

Many kinds of "noise" that could occur in the examples:

– Two examples have same attribute/value pairs, but different classifications
àreport majority classification for the examples corresponding to the node
deterministic hypothesis.
àreport estimated probabilities of each classification using the relative

frequency (if considering stochastic hypotheses)

– Some values of attributes are incorrect because of errors in the data
acquisition process or the preprocessing phase

– The classification is wrong (e.g., + instead of -) because of some error

One important reason why you don’t want to
“overfit” your learned model.

62

Overfitting
Ex.: Problem of trying to predict the roll of a die. The experiment data
include:

Day of the week; (2) Month of the week; (3) Color of the die;
….

DTL may find an hypothesis that fits the data but with irrelevant attributes.

Some attributes are irrelevant to the decision-making process, e.g., color
of a die is irrelevant to its outcome but they are used to differentiate examples

à Overfitting.

Overfitting means fitting the training set “too well”
à performance on the test set degrades.

Example overfitting risk: Using restaurant name.

63

If the hypothesis space has many dimensions because of a large number of
attributes, we may find meaningless regularity in the data that is irrelevant
to the true, important, distinguishing features.

• Fix by pruning to lower # nodes in the decision tree or put a
limit on number of nodes created.

• For example, if Gain of the best attribute at a node is below a threshold,
stop and make this node a leaf rather than generating children nodes.

Overfitting is a key problem in learning. There are formal results on
the number of examples needed to properly train an hypothesis of a
certain complexity (“number of parameters” or # nodes in DT). The
more params, the more data is needed. We’ll see some of this in our
discussion of PAC learning.

64

Overfitting

Let’s consider D, the entire distribution of data, and T, the
training set.

Hypothesis h Î H overfits D if
$ h’¹ h Î H such that

errorT(h) < errorT(h’) but
errorD(h) > errorD(h’)

Note: estimate error on full distribution by using test data set.

65

Data overfitting is the arguably the most common pitfall in
machine learning.

Why?

1) Temptation to use as much data as possible to train on. (“Ignore test
till end.” Test set too small.) Data “peeking” not noticed.

1) Temptation to fit very complex hypothesis (e.g. large decision tree). In
general, the larger the tree, the better the fit to the training data.

It’s hard to think of a better fit to the training data as a “worse”
result. Often difficult to fit training data well, so it seems that
“a good fit to the training data means a good result.”

Note: Modern “savior:” Massive amounts of data to train on!
Somewhat characteristic of ML AI community vs. traditional
statistics community. Anecdote: Netflix competition.

66

Key figure in machine learning

Note: with larger and larger trees,
we just do better and better on the training set!

We set tree size as
a parameter in our
DT learning alg.

But note the performance on the validation set…

Tree size

E
rr

or
 r

at
e

Overfitting kicks in…

Optimal tree size

errorT(h) < errorT(h’) but
errorD(h) > errorD(h’)

67

Procedure for finding the optimal tree size is called “model selection.”
See section 18.4.1 R&N and Fig. 18.8.

To determine validation error for each tree size, use k-fold cross-
validation. (Uses the data better than “holdout cross-validation.”)
Uses “all data - test set” --- k times splits that set into a training
set and a validation set.

After right decision tree size is found from the error rate curve on
validation data, train on all training data to get final decision tree
(of the right size).

Finally, evaluate tree on the test data (not used before) to get
true generalization error (to unseen examples).

68

Cross Validation

CV(data S, alg L, int k)
Divide S into k disjoint sets { S1, S2, …, Sk }
For i = 1..k do

Run L on S-i= S – Si
obtain L(S-i) = hi

Evaluate hi on Si
errSi(hi) = 1/|Si| å á x,yñ Î Si I(hi(x) ¹ y)

Return Average 1/k åi errSi(hi)

A method for estimating the accuracy
(or error) of a learner (using validation set).

Learner L is e.g. DT learner for “tree with
7 nodes” max.

69

Specific techniques for dealing with overfitting
(Model selection provides general framework)

1) Decision tree pruning or grow only up to certain size.
Prevent splitting on features that are not clearly relevant.

Testing of relevance of features --- “does split provide new
information”:
statistical tests ---> Section 18.3.5 R&N test.

2) Grow full tree, then post-prune rule post-pruning

3) MDL (minimal description length):

minimize
size(tree) + size(misclassifications(tree))

70

Converting Trees to Rules

Every decision tree corresponds to set of rules:

– IF (Patrons = None)
THEN WillWait = No

– IF (Patrons = Full)
& (Hungry = No)
&(Type = French)

THEN WillWait = Yes
– ...

71

Fighting Overfitting:
Using Rule Post-Pruning

72

73

Logical aside

74

75

End logical aside

76

Summary:
When to use Decision Trees

Instances presented as attribute-value pairs
Method of approximating discrete-valued functions

Target function has discrete values: classification problems

Robust to noisy data:
Training data may contain
– errors
– missing attribute values

Typical bias: prefer smaller trees (Ockham's razor)

Widely used, practical and easy to interpret results

77

Inducing decision trees is one of the most widely used learning methods in
practice

Can outperform human experts in many problems
Strengths include

– Fast
– simple to implement
– human readable
– can convert result to a set of easily interpretable rules
– empirically valid in many commercial products
– handles noisy data

Weaknesses include:
– "Univariate" splits/partitioning using only one attribute at a time so limits

types of possible trees
– large decision trees may be hard to understand
– requires fixed-length feature vectors
– non-incremental (i.e., batch method)

Can be a legal requirement! Why?

DECISION TREES IN SCIKIT

Trains a decision tree using default parameters (attribute
chosen to split on either Gini or entropy, no max depth, etc)

78

from sklearn.datasets import load_iris
from sklearn import tree

Load a common dataset, fit a decision tree to it
iris = load_iris()
clf = tree.DecisionTreeClassifier()
clf = clf.fit(iris.data, iris.target)

Predict most likely class
clf.predict([[2., 2.]])

Predict PDF over classes (%training samples in leaf)
clf.predict_proba([[2., 2.]])

VISUALIZING A DECISION TREE

79

from IPython.display import Image
dot_data = tree.export_graphviz(clf,

out_file=None,
feature_names=iris.feature_names,
class_names=iris.target_names,
filled=True, rounded=True)

graph = pydotplus.graph_from_dot_data(dot_data)
Image(graph.create_png())

RANDOM FORESTS
Decision trees are very interpretable, but may be brittle to
changes in the training data, as well as noise
Random forests are an ensemble method that:
• Resamples the training data;

• Builds many decision trees; and

• Averages predictions of trees to classify.
This is done through bagging and random feature selection

80

BAGGING
Bagging: Bootstrap aggregation
Resampling a training set of size n via the bootstrap:
• Sample with replacement n elements
General scheme for random forests:
1. Create B bootstrap samples, {Z1, Z2, …, ZB}
2. Build B decision trees, {T1, T2, …, TB}, from {Z1, Z2, …, ZB}
Classification/Regression:
1. Each tree Tj predicts class/value yj
2. Return average 1/B Σj={1,...,B} yj for regression,

or majority vote for classification

81

82

obs_id ft_1 ft_2
1 12.2 puppy
2 34.5 dog
3 8.1 cat

Original training
dataset (Z):

obs_id ft_1 ft_2
3 8.1 cat
2 34.5 dog
3 8.1 cat

obs_id ft_1 ft_2
1 12.2 puppy
2 34.5 dog
1 12.2 puppy

obs_id ft_1 ft_2
1 12.2 puppy
1 12.2 puppy
3 8.1 cat

Z1 Z2
ZB

B Bootstrap
samples Zj

Aggregate/Vote

T1 T2 TBTj

Class estimate or predicted value

RANDOM ATTRIBUTE
SELECTION
We get some randomness via bootstrapping
• We like this! Randomness increases the bias of the forest

slightly at a huge decrease in variance (due to averaging)

We can further reduce correlation between trees by:
1. For each tree, at every split point …
2. … choose a random subset of attributes …
3. … then split on the “best” (entropy, Gini) within only that

subset

83

RANDOM FORESTS IN
SCIKIT-LEARN

Can we get even more random?!
Extremely randomized trees (ExtraTreesClassifier)
do bagging, random attribute selection, but also:
1. At each split point, choose random splits
2. Pick the best of those random splits
Similar bias/variance performance to RFs, but can
be faster computationally

84

from sklearn.ensemble import RandomForestClassifier

Train a random forest of 10 default decision trees
X = [[0, 0], [1, 1]]
Y = [0, 1]
clf = RandomForestClassifier(n_estimators=10)
clf = clf.fit(X, Y)

