
INTRODUCTION TO
DATA SCIENCE
JOHN P DICKERSON

Lecture #17 – 10/27/2020
Lecture #19 – 11/3/2020

CMSC320
Tuesdays & Thursdays
5:00pm – 6:15pm
(… or anytime on the Internet)

ANNOUNCEMENTS

2

Mini-Project #2 was due late last week!
• Deliverable was an .ipynb file submitted to ELMS, but moving

forward this will be .pdf / .html files, for TA grading ease
• Some folks had trouble getting the .pdf export to render figures

– that’s okay, if we run into an issue grading, we’ll ping you

• In the future: can export to .html and then convert to .pdf

Mini-Project #3 is released today!
• Due slightly before Thanksgiving break

TODAY’S LECTURE

Data
collection

Data
processing

Exploratory
analysis

&
Data viz

Analysis,
hypothesis
testing, &

ML

Insight &
Policy

Decision

3

TODAY’S LECTURE
Introduction to machine learning
• How did we actually come up with that linear model from last class?

• Basic setup and terminology; linear regression & classification

Thanks to: Zico Kolter (CMU) & David Kauchak (Pomona)

4First GIS result for “machine learning”

RECALL: EXPLICIT EXAMPLE
OF STUFF FROM NLP CLASS
Score 𝝍 of an instance x and class y is the sum of the
weights for the features in that class:

𝝍xy = Σ θn fn(x, y)

= θT f(x, y)
Let’s compute 𝝍x1,y=hates_cats …

• 𝝍x1,y=hates_cats = θT f(x1, y = hates_cats = 0)

• = 0*1 + -1*1 + 1*0 + -0.1*1 + 0*0 + 1*0 + -1*0 + 0.5*0 + 1*1

• = -1 - 0.1 + 1 = -0.1

5

0 -1 1 -0.1 0 1 -1 0.5 1θ T =

hates_cats
likes_cats

(1)

1 I
1 like
0 hate
1 cats
0 I
0 like
0 hate
0 cats
1 –
f(x1, y = 0)

RECALL: EXPLICIT EXAMPLE
OF STUFF FROM NLP CLASS
Saving the boring stuff:
• 𝝍x1,y=hates_cats = -0.1; 𝝍x1,y=likes_cats = +2.5
• 𝝍x2,y=hates_cats = +1.9; 𝝍x2,y=likes_cats = +0.5

We want to predict the class of each document:

Document 1: argmax{ 𝝍x1,y=hates_cats, 𝝍x1,y=likes_cats } ????????
Document 2: argmax{ 𝝍x2,y=hates_cats, 𝝍x2,y=likes_cats } ????????

6

Document 1: I like cats

Document 2: I hate cats

ŷ = argmax
y

✓|f(x, y)

MACHINE LEARNING
We used a linear model to classify input documents
The model parameters θ were given to us a priori
• (John created them by hand.)

• Typically, we cannot specify a model by hand.

Supervised machine learning provides a way to automatically
infer the predictive model from labeled data.

7

Training Data

(x(1), y(1))
(x(2), y(2))
(x(3), y(3))

…

ML Algorithm

Hypothesis function
y(i) = h(x(i))

Predictions

New example x
y = h(x)

TERMINOLOGY
Input features:

Outputs:
y(i) ∈ {0, 1} = { hates_cats, likes_cats }

Model parameters:

8

I lik
e

ha
te

ca
ts

1 1 0 1
1 0 1 1

x(1)T =
x(2)T =

0 -1 1 -0.1 0 1 -1 0.5 1θ T =

TERMINOLOGY
Hypothesis function:
E.g., linear classifiers predict outputs using:

Loss function:
• Measures difference between a prediction and the true output

• E.g., squared loss:

• E.g., hinge loss:

9

`(y) = max(0, 1� t · y)

Output t = {-1,+1} based
on -1 or +1 class label

Classifier score y

THE CANONICAL MACHINE
LEARNING PROBLEM
At the end of the day, we want to learn a hypothesis function
that predicts the actual outputs well.

10

Given an hypothesis
function and loss function

Over all possible
parameterizations

And over all your
training data*

Choose the parameterization
that minimizes loss!

*Not actually what we want – want it over the world of inputs – will discuss later …

HOW DO I MACHINE LEARN?
1. What is the hypothesis function?

• Domain knowledge and EDA can help here.
2. What is the loss function?

• We’ve discussed two already: squared and absolute.
3. How do we solve the optimization problem?

• (We’ll cover gradient descent and stochastic gradient
descent in class, but if you are interested, take CMSC422!)

11First GIS result for “optimization”

12ASIDE: LOSS FUNCTIONS

QUICK ASIDE ABOUT
LOSS FUNCTIONS
Say we’re back to classifying documents into:
• hates_cats, translated to label y = -1

• likes_cats, translated to label y = +1

We want some parameter vector θ such that:
• 𝝍xy > 0 if the feature vector x is of class likes_cat; (y = +1)

• 𝝍xy < 0 if x’s label is y = -1

We want a hyperplane that separates positive examples from
negative examples.
Why not use 0/1 loss; that is, the number of wrong answers?

13

argmin
✓

nX

i=1

1
h
y(i) · h✓, x(i)i 0

i

MINIMIZING 0/1 LOSS IN A
SINGLE DIMENSION

loss

Each time we change θ such that the example is right
(wrong) the loss will increase (decrease)

θ

nX

i=1

1
h
y(i) · h✓, x(i)i 0

i

MINIMIZING 0/1 LOSS OVER
ALL Θ

This is NP-hard.
• Small changes in any θ can have large changes in the loss

(the change isn’t continuous)

• There can be many local minima

• At any give point, we don’t have much information to direct us
towards any minima

Maybe we should consider other loss functions.

argmin
✓

nX

i=1

1
h
y(i) · h✓, x(i)i 0

i

DESIRABLE PROPERTIES

What are some desirable properties of a loss function????????
• Continuous so we get a local indication of the direction of

minimization
• Only one (i.e., global) minimum

loss

θ

CONVEX FUNCTIONS
“A function is convex if the line segment between any two
points on its graph lies above it.”
Formally, given function f and two points x, y:

f(�x+ (1� �)y) �f(x) + (1� �)f(y) 8� 2 [0, 1]

SURROGATE LOSS
FUNCTIONS
For many applications, we really would like to minimize the
0/1 loss

A surrogate loss function is a loss function that provides an
upper bound on the actual loss function (in this case, 0/1)

We’d like to identify convex surrogate loss functions to make
them easier to minimize

Key to a loss function is how it scores the difference between
the actual label y and the predicted label y’

SURROGATE LOSS
FUNCTIONS
0/1 loss:
Any ideas for surrogate loss functions ??????????
Want: a function that is continuous and convex and upper
bounds the 0/1 loss.
• Hinge:

• Exponential:

• Squared:

What do each of these penalize?????????

`(ŷ, y) = 1 [yŷ 0]

`(ŷ, y) = max(0, 1� yŷ)

`(ŷ, y) = (y � ŷ)2
`(ŷ, y) = e�yŷ

SURROGATE LOSS FUNCTIONS
0/1 loss:

Squared loss:

Hinge:

Exponential:

`(ŷ, y) = 1 [yŷ 0]
`(ŷ, y) = max(0, 1� yŷ)

`(ŷ, y) = e�yŷ

`(ŷ, y) = (y � ŷ)2

(Recall: y in {-1, +1})

SOME ML ALGORITHMS

21

Name Hypothesis
Function

Loss Function Optimization
Approach

Least squares Linear Squared Analytical or GD

Linear regression Linear Squared Analytical or GD

Support Vector
Machine (SVM)

Linear, Kernel Hinge Analytical or GD

Perceptron Linear Perceptron
criterion (~Hinge)

Perceptron
algorithm, others

Neural Networks Composed
nonlinear

Squared, Hinge,
Cross Ent, …

SGD

Decision Trees Hierarchical
halfplanes

Many Greedy

Naïve Bayes Linear Joint probability #SAT

Follow the white rabbit: https://en.wikipedia.org/wiki/List_of_machine_learning_concepts

https://en.wikipedia.org/wiki/List_of_machine_learning_concepts

22

RECALL: LINEAR
REGRESSION

23

IncomePC

Li
st

in
g

3250030000275002500022500200001750015000

900000

800000

700000

600000

500000

400000

300000

200000

100000

Scatterplot of Listing vs IncomePC

LINEAR REGRESSION AS
MACHINE LEARNING
Let’s consider linear regression that minimizes the sum of
squared error, i.e., least squares …
1. Hypothesis function: ????????

• Linear hypothesis function

2. Loss function: ????????
• Squared error loss

3. Optimization problem: ????????

24

LINEAR REGRESSION AS
MACHINE LEARNING
Rewrite inputs:

Rewrite optimization problem:

25

Each row is a feature vector paired
with a label for a single input

m labeled inputs

n features

*Recall:

GRADIENTS
In Lecture 11, we showed that the mean is the point that
minimizes the residual sum of squares:
• Solved minimization by finding point where derivative is zero

• (Convex functions like RSS à single global minimum.)

The gradient is the multivariate generalization of a derivative.
For a function the gradient is a vector of all n
partial derivatives:

26

GRADIENTS

27Gradient of f(x,y) = xe−(x2 + y2)

GRADIENTS
Minimizing a multivariate function involves finding a point
where the gradient is zero:

Points where the gradient is zero are local minima
• If the function is convex, also a global minimum
Let’s solve the least squares problem!
We’ll use the multivariate generalizations of
some concepts from MATH141/142 …
• Chain rule:

• Gradient of squared ℓ2 norm:

28

LEAST SQUARES
Recall the least squares optimization problem:

What is the gradient of the optimization objective ????????

29

Chain rule:

Gradient of norm:

LEAST SQUARES
Recall: points where the gradient equals zero are minima.

So where do we go from here?????????

30

XT (X✓ � y) = 0 Solve for model
parameters θ

XTX✓ �XT y = 0 XTX✓ = XT y

(XTX)�1XTX✓ = (XTX)�1XT y

✓ = (XTX)�1XT y

ML IN PYTHON
Python has tons of hooks into a variety of machine learning
libraries. (Part of why this course is taught in Python!)
Scikit-learn is the most well-known library:
• Classification (SVN, K-NN, Random Forests, …)

• Regression (SVR, Ridge, Lasso, …)

• Clustering (k-Means, spectral, mean-shift, …)
• Dimensionality reduction (PCA, matrix factorization, …)

• Model selection (grid search, cross validation, …)

• Preprocessing (cleaning, EDA, …)

Built on the NumPy stack; plays well with Matplotlib.

31

LEAST SQUARES IN PYTHON
You don’t need Scikit-learn for OLS …

But let’s say you did want to use it.

32

Analytic solution to OLS using Numpy
params = np.linalg.solve(X.T.dot(X), X.T.dot(y))

✓ = (XTX)�1XT y

from sklearn import linear_model

X = [[0,0], [1,1], [2,2]]
Y = [0, 1, 2]

Solve OLS using Scikit-Learn
reg = linear_model.LinearRegression()
reg.fit(X, Y)
reg.coef_

array([0.5, 0.5])

NEXT, OR NEXT CLASS:
(STOCHASTIC)

GRADIENT DESCENT

33

TODAY:
GRADIENT DESCENT
We used the gradient as a condition for optimality
It also gives the local direction of steepest increase for a
function:

Intuitive idea: take small steps against the gradient.

34Image from Zico Kolter

If there is no increase,
gradient is zero = local
minimum!

GRADIENT DESCENT
Algorithm for any* hypothesis function , loss
function , step size :
Initialize the parameter vector:
•

Repeat until satisfied (e.g., exact or approximate
convergence):
• Compute gradient:
• Update parameters:

35*must be reasonably well behaved

GRADIENT DESCENT
Step-size (\alpha) is an important parameter

• Too large à might oscillate around the minima
• Too small à can take a long time to converge

If there are no local minima, then the algorithm eventually
converges to the optimal solution

Very widely used in Machine Learning

36

EXAMPLE
Function: f(x,y) = x2 + 2y2

Gradient: ??????????

Let’s take a gradient step
from (-2, +1/2):

Step in the direction (+4, -
2), scaled by step size
Repeat until no movement

37

rf(x, y) =

2x
4y

�

rf(�2, 1) =

4
2

�
-

GRADIENT DESCENT
FOR OLS
Algorithm for linear hypothesis function and squared error
loss function (combined to , like before):

Initialize the parameter vector:
•

Repeat until satisfied:
• Compute gradient:
• Update parameters:

38

1/2kX✓ � yk22

GRADIENT DESCENT IN
PURE(-ISH) PYTHON

Implicitly using squared loss and linear hypothesis function
above; drop in your favorite gradient for kicks!

39

Training data (X, y), T time steps, alpha step
def grad_descent(X, y, T, alpha):

m, n = X.shape # m = #examples, n = #features
theta = np.zeros(n) # initialize parameters
f = np.zeros(T) # track loss over time

for i in range(T):
loss for current parameter vector theta
f[i] = 0.5*np.linalg.norm(X.dot(theta) – y)**2
compute steepest ascent at f(theta)
g = X.T.dot(X.dot(theta) – y)
step down the gradient
theta = theta – alpha*g

return theta, f

PLOTTING LOSS OVER TIME

Why ????????

40Image from Zico Kolter

ITERATIVE VS ANALYTIC
SOLUTIONS
But we already had an analytic solution! What gives?
Recall: last class we discuss 0/1 loss, and using convex
surrogate loss functions for tractability
One such function, the absolute error loss function, leads to:

Problems ????????
• Not differentiable! But subgradients?

• No closed form!

• So you must use iterative method

41

LEAST ABSOLUTE
DEVIATIONS
Can solve this using gradient descent and the gradient:

Simple to change in our Python code:

42

for i in range(T):
loss for current parameter vector theta
f[i] = np.linalg.norm(X.dot(theta) – y, 1)
compute steepest ascent at f(theta)
g = X.T.dot(np.sign(X.dot(theta) – y))
step down the gradient
theta = theta – alpha*g

return theta, f

BATCH VS STOCHASTIC
GRADIENT DESCENT
Batch: Compute a single gradient (vector) for the entire
dataset (as we did so far)

Incremental/Stochastic:
• Do one training sample at a time, i.e., update parameters for

every sample separately
• Much faster in general, with more pathological cases

43

5

For a single training example, this gives the update rule:1

θj := θj + α
(

y(i) − hθ(x
(i))
)

x(i)
j .

The rule is called the LMS update rule (LMS stands for “least mean squares”),
and is also known as the Widrow-Hoff learning rule. This rule has several
properties that seem natural and intuitive. For instance, the magnitude of
the update is proportional to the error term (y(i) − hθ(x(i))); thus, for in-
stance, if we are encountering a training example on which our prediction
nearly matches the actual value of y(i), then we find that there is little need
to change the parameters; in contrast, a larger change to the parameters will
be made if our prediction hθ(x(i)) has a large error (i.e., if it is very far from
y(i)).

We’d derived the LMS rule for when there was only a single training
example. There are two ways to modify this method for a training set of
more than one example. The first is replace it with the following algorithm:

Repeat until convergence {

θj := θj + α
∑m

i=1

(

y(i) − hθ(x(i))
)

x(i)
j (for every j).

}

The reader can easily verify that the quantity in the summation in the update
rule above is just ∂J(θ)/∂θj (for the original definition of J). So, this is
simply gradient descent on the original cost function J . This method looks
at every example in the entire training set on every step, and is called batch

gradient descent. Note that, while gradient descent can be susceptible
to local minima in general, the optimization problem we have posed here
for linear regression has only one global, and no other local, optima; thus
gradient descent always converges (assuming the learning rate α is not too
large) to the global minimum. Indeed, J is a convex quadratic function.
Here is an example of gradient descent as it is run to minimize a quadratic
function.

1We use the notation “a := b” to denote an operation (in a computer program) in
which we set the value of a variable a to be equal to the value of b. In other words, this
operation overwrites a with the value of b. In contrast, we will write “a = b” when we are
asserting a statement of fact, that the value of a is equal to the value of b.

7

Loop {

for i=1 to m, {

θj := θj + α
(

y(i) − hθ(x(i))
)

x(i)
j (for every j).

}

}

In this algorithm, we repeatedly run through the training set, and each time
we encounter a training example, we update the parameters according to
the gradient of the error with respect to that single training example only.
This algorithm is called stochastic gradient descent (also incremental

gradient descent). Whereas batch gradient descent has to scan through
the entire training set before taking a single step—a costly operation if m is
large—stochastic gradient descent can start making progress right away, and
continues to make progress with each example it looks at. Often, stochastic
gradient descent gets θ “close” to the minimum much faster than batch gra-
dient descent. (Note however that it may never “converge” to the minimum,
and the parameters θ will keep oscillating around the minimum of J(θ); but
in practice most of the values near the minimum will be reasonably good
approximations to the true minimum.2) For these reasons, particularly when
the training set is large, stochastic gradient descent is often preferred over
batch gradient descent.

2 The normal equations

Gradient descent gives one way of minimizing J . Let’s discuss a second way
of doing so, this time performing the minimization explicitly and without
resorting to an iterative algorithm. In this method, we will minimize J by
explicitly taking its derivatives with respect to the θj ’s, and setting them to
zero. To enable us to do this without having to write reams of algebra and
pages full of matrices of derivatives, let’s introduce some notation for doing
calculus with matrices.

2While it is more common to run stochastic gradient descent as we have described it
and with a fixed learning rate α, by slowly letting the learning rate α decrease to zero as
the algorithm runs, it is also possible to ensure that the parameters will converge to the
global minimum rather then merely oscillate around the minimum.

From: Andrew Ng, CS229 Lecture Notes

