INTRODUCTION TO DATA SCIENCE

JOHN P DICKERSON

Midterm Review – 10/17/2019

CMSC320 Tuesdays & Thursdays 5:00pm – 6:15pm

ANNOUNCEMENTS

Mini-Project #3 is not out yet! Will be out after the midterm.

- It will be linked to from ELMS; will also be available at: https://github.com/cmsc320/fall2019/tree/master/project3
- Deliverable is a .ipynb file submitted to ELMS
- Due before Thanksgiving (TBD)

Please label your ipynb file something like <lastname>_<firstname>_project3.ipynb

• E.g., dickerson_john_project3.ipynb

PROJECT 1 GRADES ARE UP!

General comments:

People did really well!

We used a fairly strict rubric, but if you have a real bone to pick with your grade, please triage through TAs/office hours!

Comments for our sanity, moving forward:

- df.head(n) -- defaults to n = 5, use ~10, 20, 50 as needed
- Please label your ipynb file something like <lastname>_<firstname>_project3.ipynb
- E.g., dickerson_john_project3.ipynb

PROJECT 1 GRADES ARE UP!

Grade statistics for: Project 1

×

1

Average Score:	84.55
High Score:	100
Low Score:	0
Total Graded Submissions:	299 submissions

PROJECT 1 GRADES ARE UP!

Project 1 Grades Released, & Regrade Policy

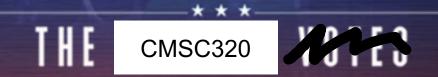
Project 1 grades are out! Folks largely did quite well! If you feel you were misgraded, **please follow the regrade policy listed below**. On ELMS, you can see which TA graded your project. (Grading was split across TAs; we have 300 students, after all!). Identify that TA, and then send an email with ...

Subject:

[CMSC320] Project 1 Regrade Request

Body:

- * Student Name (e.g., John Dickerson)
- * Student ID (e.g., johnd)
- * The full submitted assignment (ipynb attachment; if we choose to do a regrade, we'll diff against the ELMS submission) For each problem you want regraded:
- * The problem number
- * The reason points were taken off
- * The reason you believe points should be given back



2019 MIDTERM ELECTIONS WHAT YOU NEED TO KNOW

MIDTERM: STRUCTURE

50 points = 25% of the total grade

10 points:

• 10 True/False questions, 1 point each

10 points:

• 5 multiple choice questions, 2 points each

30 points:

• 10 short answer questions, 3 points each

Compared to the CMSC320 midterm I posted from an earlier semester, this midterm is shorter.

MIDTERM: CHEAT SHEET

You can use a cheat sheet on the exam:

- Create it on your own
- Handwritten notes only
- One side of one 8.5x11 inch ("normal-sized") sheet of paper

You'll turn in your cheat sheet with your midterm

QUICK MIDTERM REVIEW

As discussed in previous lectures and on Piazza, the midterm can cover:

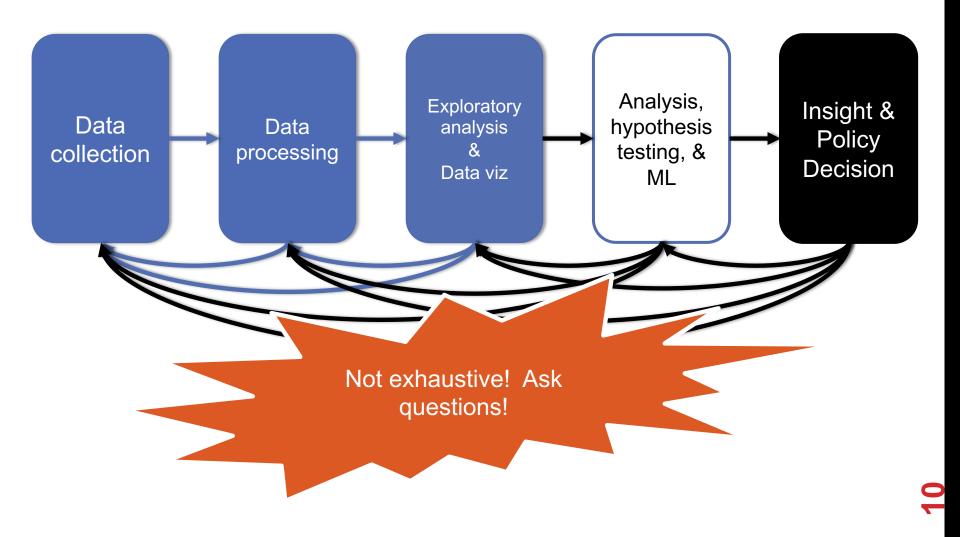
- Up to and including today's lecture (10/17)
- Quizzes that were due on or before today
- Stuff that you should know from doing P1 and P2

Everything is online: https://cmsc320.github.io/

I know this is a lot of material.

- Rule of thumb: open up a slide deck
- Do you feel "comfortable" with the material?
- Test will be more qualitative than prior 1xx, 2xx, 3xx tests

QUICK MIDTERM REVIEW



DATA COLLECTION (DC) & DATA PROCESSING (DP)

We talked about:

- Scraping data
- RESTful APIs
- Structured data formats (JSON, XML, etc)
- Regexes

Data manipulation via Numpy Stack (Numpy, Pandas, etc)

Indexing, slicing, groups, joins, aggregate queries, etc
 Tidy data + melting

Version control (just know how this works qualitatively)

RDMS, a little bit of SQL

Entity resolution & other data integration issues

Storing stuff as a graph, and manipulating it

DC: HTTP REQUESTS

https://www.google.com/?q=cmsc320&tbs=qdr:m

HTTP GET Request:

Google

GET /?q=cmsc320&tbs=qdr:m HTTP/1.1 Host: www.google.com User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:10.0.1) Gecko/20100101 Firefox/10.0.1

*be careful with https:// calls; requests will not verify SSL by default

DC: RESTFUL APIS

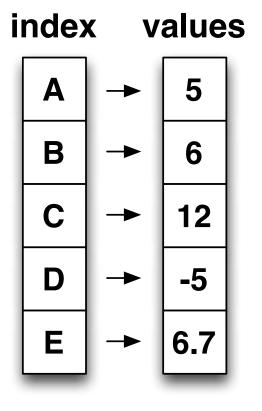
This class will just query web APIs, but full web APIs typically allow more.

Representational State Transfer (RESTful) APIs:

- GET: perform query, return data
- **POST**: create a new entry or object
- PUT: update an existing entry or object
- **DELETE**: delete an existing entry or object

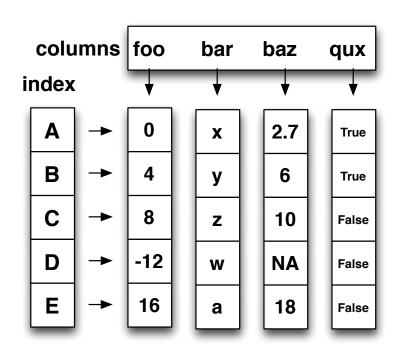
Can be more intricate, but verbs ("put") align with actions

DC: PANDAS: SERIES



- Subclass of numpy.ndarray
- Data: any type
- Index labels need not be ordered
- Duplicates possible but result in reduced functionality

DC: PANDAS: DATAFRAME



- Each column can have a different type
- Row and Column index
- Mutable size: insert and delete columns
- Note the use of word "index" for what we called "key"
 - Relational databases use "index" to mean something else
- Non-unique index values allowed
 - May raise an exception for some operations

DC: STORING A GRAPH

Three main ways to represent a graph in memory:

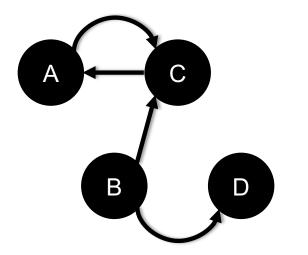
- Adjacency lists
- Adjacency dictionaries
- Adjacency matrix

The storage decision should be made based on the expected use case of your graph:

- Static analysis only?
- Frequent updates to the structure?
- Frequent updates to semantic information?

DC: ADJACENCY LISTS

For each vertex, store an array of the vertices it connects to



Vertex	Neighbors
А	[C]
В	[C, D]
С	[A]
D	

Pros: ????????

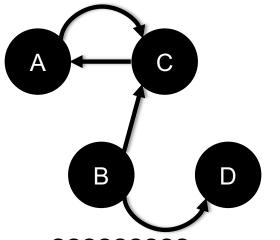
• Iterate over all outgoing edges; easy to add an edge

Cons: ????????

• Checking for the existence of an edge is O(|V|), deleting is hard

DC: ADJACENCY DICTIONARIES

For each vertex, store a dictionary of vertices it connects to



Vertex	Neighbors
А	{C: 1.0}
В	{C: 1.0, D: 1.0}
С	{A: 1.0}
D	{}

Pros: ?????????

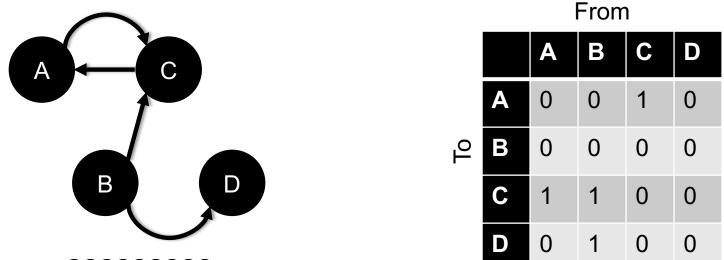
• O(1) to add, remove, query edges

Cons: ?????????

• Overhead (memory, caching, etc)

DC: ADJACENCY MATRIX

Store the connectivity of the graph in a matrix



Cons: ?????????

• O(|V|²) space regardless of the number of edges

Almost always stored as a sparse matrix

DP: SELECT/SLICING

Select only some of the rows, or some of the columns, or a combination

age

						490	
ID	age	wgt_kg	hgt_cm	Only columns	1	12.2	
1	12.2	42.3	145.1	ID and Age	2	11.0	
2	11.0	40.8	143.8		3	15.6	
3	15.6	65.3	165.3		4	35.1	
4	35.1	84.2	185.8				
	Only rows with wgt > 41			Both	D	age	
ID	age	wgt_kg	hgt_cm	1	1	12.2	
1	12.2	42.3	145.1		3	15.6	
3	15.6	65.3	165.3		-	35.1	00
4	35.1	84.2	185.8		+	55.1	

DP: AGGREGATE/REDUCE

Combine values across a column into a single value

40.0	6	232.6	73.9				igio faido	
				SUM	hgt_cm	wgt_kg	age	ID
					145.1	42.3	12.2	1
185.8		84.2	35.1	MAX	143.8	40.8	11.0	2
					165.3	65.3	15.6	3
		m)	^2 - hat a	SUM(wat ka	185.8	84.2	35.1	4
		////	z ngr_c	com(wgt_kg				
		167.66	What about ID/Index column? Usually not meaningful to aggregate across it					
				SUM(wgt_kg	n?	dex colum	about ID/In	What

May need to explicitly add an ID column

DP: MAP

Apply a function to every row, possibly creating more or fewer columns

ID	Address
1	College Park, MD, 20742
2	Washington, DC, 20001
3	Silver Spring, MD 20901

1	D	City	State	Zipcode
1	1	College Park	MD	20742
2	2	Washington	DC	20001
3	3	Silver Spring	MD	20901

Variations that allow one row to generate multiple rows in the output (sometimes called "flatmap")

DP: GROUP BY

Group tuples together by column/dimension

ID	Α	В	С
1	foo	3	6.6
2	bar	2	4.7
3	foo	4	3.1
4	foo	3	8.0
5	bar	1	1.2
6	bar	2	2.5
7	foo	4	2.3
8	foo	3	8.0

A = foo

ID	В	С
1	3	6.6
3	4	3.1
4	3	8.0
7	4	2.3
8	3	8.0

A = bar

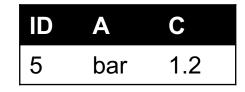
ID	В	С
2	2	4.7
5	1	1.2
6	2	2.5

DP: GROUP BY

Group tuples together by column/dimension

ID	Α	В	С
1	foo	3	6.6
2	bar	2	4.7
3	foo	4	3.1
4	foo	3	8.0
5	bar	1	1.2
6	bar	2	2.5
7	foo	4	2.3
8	foo	3	8.0

B = 1



ID	Α	С
2	bar	4.7
6	bar	2.5

ID	Α	С
3	foo	3.1
7	foo	2.3

DP: GROUP BY

By 'A', 'B'

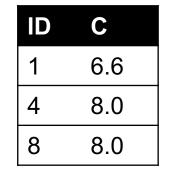
Group tuples together by column/dimension

ID	Α	В	С
1	foo	3	6.6
2	bar	2	4.7
3	foo	4	3.1
4	foo	3	8.0
5	bar	1	1.2
6	bar	2	2.5
7	foo	4	2.3
8	foo	3	8.0

A = bar, B = 1

$$A = bar, B = 2$$

ID	С
2	4.7
6	2.5



$$A = foo, B = 4$$

DP: GROUP BY AGGREGATE

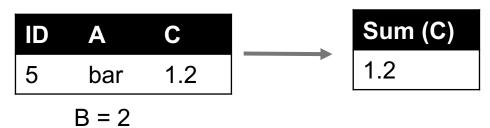
Compute one aggregate

Per group

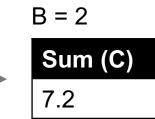
ID	Α	B	С
1	foo	3	6.6
2	bar	2	4.7
3	foo	4	3.1
4	foo	3	8.0
5	bar	1	1.2
6	bar	2	2.5
7	foo	4	2.3
8	foo	3	8.0

B = 1

B = 1



ID	Α	С	
2	bar	4.7	
6	bar	2.5	



B = 3

B = 4

Α

foo

foo

1

4

8

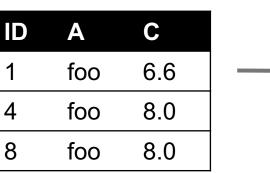
ID

3

7

Group by 'B'

Sum on C



С

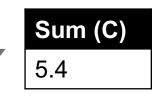
3.1

2.3

B = 3

Sum	(C)
22.6	

B = 4

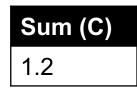


6

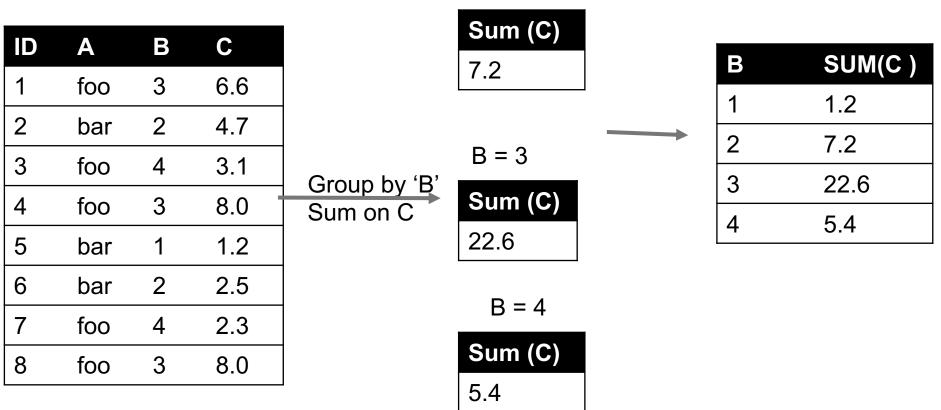
DP: GROUP BY AGGREGATE

Final result usually seen

As a table



B = 2



DP: UNION/INTERSECTION/DIFFERENCE

Set operations – only if the two tables have identical attributes/columns

ID	Α	Β	С	
1	foo	3	6.6	
2	bar	2	4.7	
3	foo	4	3.1	
4	foo	3	8.0	

ID	Α	В	С	
5	bar	1	1.2	
6	bar	2	2.5	-
7	foo	4	2.3	
8	foo	3	8.0	

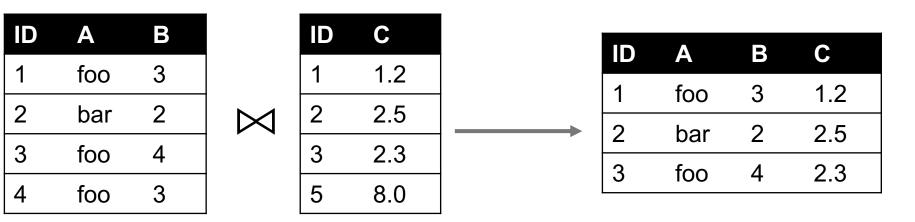
ID	Α	В	С
1	foo	3	6.6
2	bar	2	4.7
3	foo	4	3.1
4	foo	3	8.0
5	bar	1	1.2
6	bar	2	2.5
7	foo	4	2.3
8	foo	3	8.0

Similarly Intersection and Set Difference manipulate tables as Sets

IDs may be treated in different ways, resulting in somewhat different behaviors

DP: MERGE OR JOIN

Combine rows/tuples across two tables if they have the same key



What about IDs not present in both tables?

Often need to keep them around

Can "pad" with NaN

DP: MERGE OR JOIN

Combine rows/tuples across two tables if they have the same key Outer joins can be used to "pad" IDs that don't appear in both tables Three variants: LEFT, RIGHT, FULL

SQL Terminology -- Pandas has these operations as well

foo 3 1 1.2 bar 2 2 2.5 3 foo 4 4)	Α	В		ID	С	ID	Α	В	
2 bar 2 2.5 2 2.5 3 foo 4 3 600 4 4 600 3	1	_			1		1	foo	3	
3 foo 4 3 2.3 3 foo 4 2	2			~	2		2	bar	2	1
4 foo 3							 3	foo	4	
				-	-		4	foo	3	I

DP: GOOGLE IMAGE SEARCH ONE SLIDE SQL JOIN VISUAL

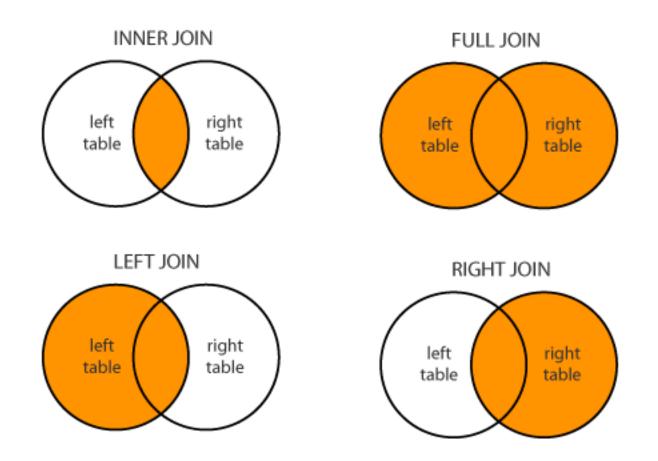
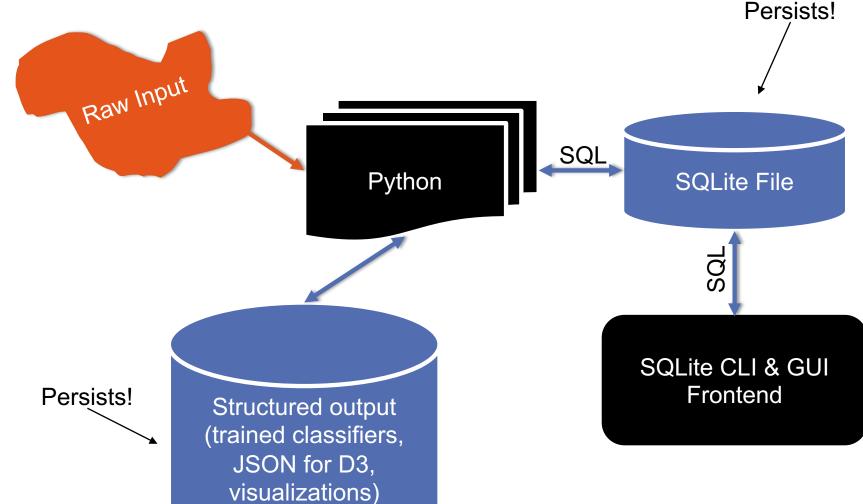


Image credit: http://www.dofactory.com/sql/join

DC/DP: HOW A RELATIONAL DB FITS INTO YOUR WORKFLOW



32

DP: ADDITIONAL STUFF

Data integration

 Extraction, schema alignment & mapping, querying over multiple schema / global schema

Data quality issues

• Single- vs multi-source quality issues

Data cleaning

• Outlier detection, constraint-based cleaning

Entity resolution (~part of data cleaning)

- Deduplication, record linkage, reference matching
- Fuzzy matching, etc.

Missing data

- MCAR
- MAR
- MNAR
- Single & multiple imputation

Analysis

- Basic linear regression
- Summary statistics / robust statistics
- Variance, stdev, covariance, Pearson's correlation coefficient
- Hypothesis testing
- Bayes' rule

EDA: MISSING DATA

Missing data is information that we want to know, but don't It can come in many forms, e.g.:

- People not answering questions on surveys
- Inaccurate recordings of the height of plants that need to be discarded
- Canceled runs in a driving experiment due to rain

Could also consider missing columns (no collection at all) to be missing data ...

EDA: COMPLETE CASE ANALYSIS

Delete all tuples with any missing values at all, so you are left only with observations with all variables observed

Clean out rows with nil values
df = df.dropna()

Default behavior for libraries for analysis (e.g., regression)

• We'll talk about this much more during the Stats/ML lectures

- Loss of sample will lead to variance larger than reflected by the size of your data
- May bias your sample

EDA: YOUR SAMPLE

Hair Color	Gender	Grade
Red	М	А
Brown	F	А
Black	F	В
Black	М	А
Brown	М	
Brown	М	
Brown	F	
Black	М	В
Black	М	В
Brown	F	А
Black	F	
Brown	F	С
Red	М	
Red	F	А
Brown	М	А
Black	М	А

Summary:

- 7 students received As
- 3 students received Bs
- 1 student received a C

Nobody is failing!

• But 5 students did not reveal their grade ...

EDA: WHAT INFLUENCES A DATA POINT'S PRESENCE?

Same dataset, but the values are replaced with a "0" if the data point is observed and "1" if it is not

Question: for any one of these data points, what is the probability that the point is equal to "1" ...?

What type of missing-ness do the grades exhibit?

Hair Color	Gender	Grade
0	0	0
0	0	0
0	0	0
0	0	0
0	0	1
0	0	1
0	0	<u>1</u>
0	0	0
0	0	0
0	0	0
0	0	<u>1</u>
0	0	0
0	0	<u>1</u>
0	0	0
0	0	0
0	0	0

EDA: MCAR: MISSING COMPLETELY AT RANDOM

If this probability is not dependent on any of the data, observed or unobserved, then the data is Missing Completely at Random (MCAR)

Suppose that X is the observed data and Y is the unobserved data. Call our "missing matrix" R

P(R|X,Y) = P(R)

Probability of those rows missing is independent of anything.

EDA: MAR: MISSING AT RANDOM

Missing at Random (MAR): probability of missing data is dependent on the observed data but not the unobserved data

Suppose that X is the observed data and Y is the unobserved data. Call our "missing matrix" R

 $\mathsf{P}(\mathsf{R}|\mathsf{X},\mathsf{Y})=\mathsf{P}(\mathsf{R}|\mathsf{X})$

Not exactly random (in the vernacular sense).

- There is a probabilistic mechanism that is associated with whether the data is missing
- Mechanism takes the observed data as input

EDA: MNAR: MISSING NOT AT RANDOM

MNAR: missing-ness has something to do with the missing data itself

Examples: ??????????

• Do you binge drink? Do you have a trust fund? Do you use illegal drugs? What is your sexuality? Are you depressed?

Said to be "non-ignorable":

- Missing data mechanism must be considered as you deal with the missing data
- Must include model for why the data are missing, and best guesses as to what the data might be

EDA: BACK TO CSIC ...

Is the the n	nissing	data:		
• MCAR;				
• MAR; or	,			
• MNAR?				
?????????	???			
	III			
		E and	<u>LI</u> II	1

Hair Color	Gender	Grade
Red	М	А
Brown	F	А
Black	F	В
Black	М	А
Brown	М	
Brown	М	
Brown	F	
Black	М	В
Black	М	В
Brown	F	А
Black	F	
Brown	F	С
Red	М	
Red	F	А
Brown	М	А
Black	М	А

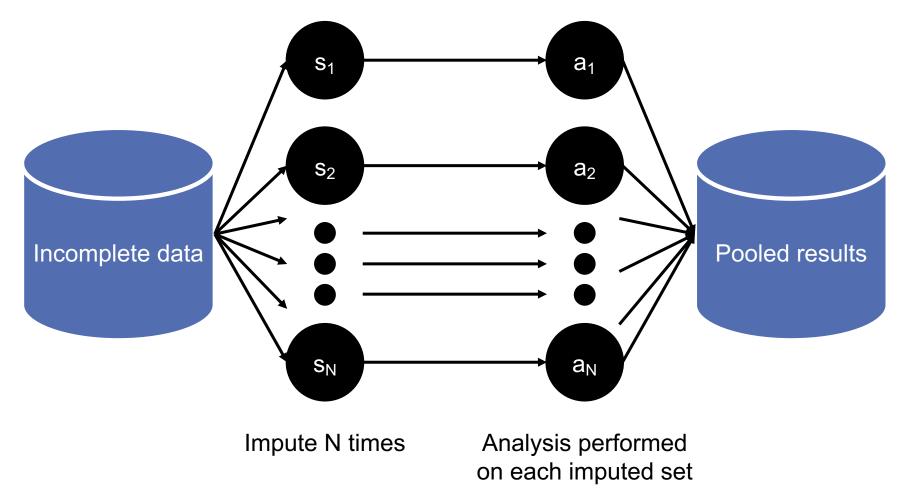
EDA: ADD A VARIABLE

Bring in the GPA:

Does this change anything?

Hair Color	GPA	Gender	Grade
Red	3.4	М	А
Brown	3.6	F	A
Black	3.7	F	В
Black	3.9	М	A
Brown	2.5	М	
Brown	3.2	М	
Brown	3.0	F	
Black	2.9	М	В
Black	3.3	М	В
Brown	4.0	F	A
Black	3.65	F	
Brown	3.4	F	С
Red	2.2	М	
Red	3.8	F	A
Brown	3.8	М	A
Black	3.67	М	А

EDA: MULTIPLE IMPUTATION PROCESS



ANALYSIS: IMPORTANCE OF VERTICES

Not all vertices are equally important

Centrality Analysis:

- Find out the most important node(s) in one network
- Used as a feature in classification, for visualization, etc ...

Commonly-used Measures

- Degree Centrality
- Closeness Centrality
- Betweenness Centrality
- Eigenvector Centrality

ANALYSIS: DEGREE CENTRALITY

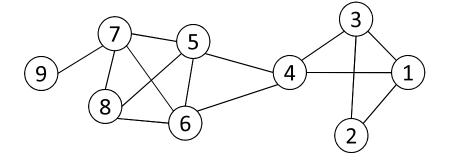
The importance of a vertex is determined by the number of vertices adjacent to it

- The larger the degree, the more important the vertex is
- Only a small number of vertex have high degrees in many reallife networks

Degree Centrality:
$$C_D(v_i) = d_i = \sum_j A_{ij}$$

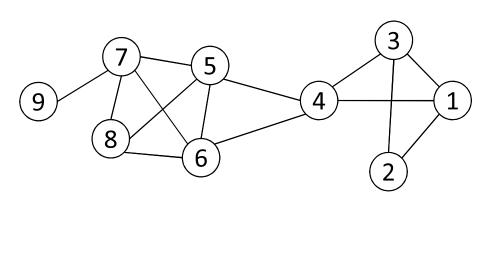
Normalized Degree Centrality:

$$C'_D(v_i) = d_i/(n-1)$$



For vertex 1, degree centrality is 3; Normalized degree centrality is 3/(9-1)=3/8.

ANALYSIS: BETWEENNESS CENTRALITY



Ta	ble 2.2:	$\sigma_{st}(4)/\sigma_{st}$			
	s = 1	s = 2	s = 3		
t = 5	1/1	2/2	1/1		
t = 6	1/1	2/2	1/1		
t = 7	2/2	4/4	2/2		
t = 8	2/2	4/4	2/2		
t = 9	2/2	4/4	2/2		

 σ_{st} : The number of shortest paths between s and t

 $\sigma_{st}(v_i): \text{ The number of shortest paths between s and t that pass } v_i$ $C_B(v_i) = \sum_{v_s \neq v_i \neq v_t \in V, s < t} \frac{\sigma_{st}(v_i)}{\sigma_{st}}$

What is the betweenness centrality for node 4 ??????????

ANALYSIS: TERM FREQUENCY

Term frequency: the number of times a term appears in a specific document

• tf_{ij}: frequency of word *j* in document *i*

This can be the raw count (like in the BOW in the last slide):

- $tf_{ij} \in \{0,1\}$ if word *j* appears or doesn't appear in doc *i*
- $log(1 + tf_{ij})$ reduce the effect of outliers
- $tf_{ij} / max_j tf_{ij}$ normalize by document i's most frequent word

What can we do with this?

• Use as features to learn a classifier $w \rightarrow y \dots$!

ANALYSIS: INVERSE DOCUMENT FREQUENCY

Recall:

• tf_{ij}: frequency of word *j* in document *i*

• Term frequency gets overloaded by common words

Inverse Document Frequency (IDF): weight individual words negatively by how frequently they appear in the corpus:

$$\mathrm{idf}_j = \log\left(\frac{\#\mathrm{documents}}{\#\mathrm{documents}}\right)$$

IDF is just defined for a word j, not word/document pair j, i

ANALYSIS: TF-IDF

How do we use the IDF weights?

Term frequency inverse document frequency (TF-IDF):

• TF-IDF score: tf_{ij} x idf_j

	the	CMSC320	you	he		quick	gob	me	CMSCs	 than
Document 1	0.8	0	0	0	0	1.1	1.1	0	0	0
Document 2	0	0	2.2	0.8	1.1	0	0	1.1	0	 0
Document 3	0.8	1.1	0	0.4	0	0	0	0	1.1	1.1

This ends up working better than raw scores for classification and for computing similarity between documents.

ANALYSIS: SIMILARITY BETWEEN DOCUMENTS

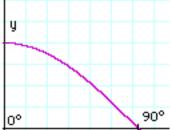
Given two documents x and y, represented by their TF-IDF vectors (or any vectors), the cosine similarity is:

similarity
$$(\mathbf{x}, \mathbf{y}) = \frac{\mathbf{x}^{\mathsf{T}} \mathbf{y}}{|\mathbf{x}| \times |\mathbf{y}|}$$

Formally, it measures the cosine of the angle between two vectors x and y:

• $\cos(0^\circ) = 1, \cos(90^\circ) = 0$?????????

Similar documents have high cosine similarity; dissimilar documents have low cosine similarity.



ONE LAST THING ...

Bring a writing utensil. You will need to it. To write.

