
INTRODUCTION TO
DATA SCIENCE
JOHN P DICKERSON

Lecture #4 – 9/5/2019

CMSC320
Tuesdays & Thursdays
5:00pm – 6:15pm

QUIZ #1 RECAP
Remember, quizzes are pass/fail
• 60% and higher à 100%

• Please don’t email to bump an “80%” to a “90%” – because it
doesn’t impact your grade at all

2

QUIZ #1: GENERALIZATION

3

ANNOUNCEMENTS
Register on Piazza: piazza.com/umd/fall2019/cmsc320
• 298 have registered already?!

• Probably a few haven’t registered yet?!

We will release the first mini-project soon.
• Please make sure Jupyter installed correctly!

• (See any of us if it didn’t.)

4

NEXT FEW CLASSES
1. NumPy: Python Library for Manipulating nD Arrays

Multidimensional Arrays, and a variety of operations including
Linear Algebra

2. Pandas: Python Library for Manipulating Tabular Data
Series, Tables (also called DataFrames)
Many operations to manipulate and combine tables/series

3. Relational Databases
Tables/Relations, and SQL (similar to Pandas operations)

4. Apache Spark
Sets of objects or key-value pairs
MapReduce and SQL-like operations

5

NEXT FEW CLASSES
1. NumPy: Python Library for Manipulating nD Arrays

Multidimensional Arrays, and a variety of operations including
Linear Algebra

2. Pandas: Python Library for Manipulating Tabular Data
Series, Tables (also called DataFrames)
Many operations to manipulate and combine tables/series

3. Relational Databases
Tables/Relations, and SQL (similar to Pandas operations)

4. Apache Spark
Sets of objects or key-value pairs
MapReduce and SQL-like operations

6

NUMERIC & SCIENTIFIC
APPLICATIONS
Number of third-party packages available for numerical and
scientific computing
These include:
• NumPy/SciPy – numerical and scientific function libraries.

• numba – Python compiler that support JIT compilation.

• ALGLIB – numerical analysis library.
• pandas – high-performance data structures and data analysis

tools.

• pyGSL – Python interface for GNU Scientific Library.

• ScientificPython – collection of scientific computing modules.

7

Many, many thanks to: FSU CIS4930

NUMPY AND FRIENDS
By far, the most commonly used packages are those in the
NumPy stack. These packages include:
• NumPy: similar functionality as Matlab

• SciPy: integrates many other packages like NumPy

• Matplotlib & Seaborn – plotting libraries

• iPython via Jupyter – interactive computing
• Pandas – data analysis library

• SymPy – symbolic computation library

8

[FSU]

THE NUMPY STACK

9

Today/next class
Image from Continuum Analytics

Later

Mid- &
Late-

semester

NUMPY
Among other things, NumPy contains:
• A powerful n-dimensional array object.

• Sophisticated (broadcasting/universal) functions.

• Tools for integrating C/C++ and Fortran code.

• Useful linear algebra, Fourier transform, and random number
capabilities, etc.

Besides its obvious scientific uses, NumPy can also be used
as an efficient multi-dimensional container of generic data.

10

[FSU]

NUMPY
ndarray object: an n-dimensional array of homogeneous
data types, with many operations being performed in
compiled code for performance
Several important differences between NumPy arrays and the
standard Python sequences:
• NumPy arrays have a fixed size. Modifying the size means

creating a new array.

• NumPy arrays must be of the same data type, but this can
include Python objects – may not get performance benefits

• More efficient mathematical operations than built-in sequence
types.

11

[FSU]

NUMPY DATATYPES
Wider variety of data types than are built-in to the Python
language by default.
Defined by the numpy.dtype class and include:
• intc (same as a C integer) and intp (used for indexing)
• int8, int16, int32, int64
• uint8, uint16, uint32, uint64
• float16, float32, float64
• complex64, complex128
• bool_, int_, float_, complex_ are shorthand for defaults.
These can be used as functions to cast literals or sequence
types, as well as arguments to NumPy functions that accept the
dtype keyword argument.

12

[FSU]

>>> import numpy as np
>>> x = np.float32(1.0)
>>> x
1.0
>>> y = np.int_([1,2,4])
>>> y
array([1, 2, 4])
>>> z = np.arange(3, dtype=np.uint8)
>>> z
array([0, 1, 2], dtype=uint8)
>>> z.dtype
dtype('uint8')

NUMPY DATATYPES

13

[FSU]

NUMPY ARRAYS
There are a couple of mechanisms for creating arrays in
NumPy:
• Conversion from other Python structures (e.g., lists, tuples)

• Any sequence-like data can be mapped to a ndarray
• Built-in NumPy array creation (e.g., arange, ones, zeros,

etc.)

• Create arrays with all zeros, all ones, increasing numbers
from 0 to 1 etc.

• Reading arrays from disk, either from standard or custom
formats (e.g., reading in from a CSV file)

14

[FSU]

NUMPY ARRAYS
In general, any numerical data that is stored in an array-like
container can be converted to an ndarray through use of the
array() function. The most obvious examples are
sequence types like lists and tuples.

15

[FSU]

>>> x = np.array([2,3,1,0])

>>> x = np.array([2, 3, 1, 0])

>>> x = np.array([[1,2.0],[0,0],(1+1j,3.)])

>>> x = np.array([[1.+0.j, 2.+0.j], [0.+0.j, 0.+0.j],
[1.+1.j, 3.+0.j]])

NUMPY ARRAYS
Creating arrays from scratch in NumPy:
• zeros(shape)– creates an array filled with 0 values with the

specified shape. The default dtype is float64.

• ones(shape) – creates an array filled with 1 values.

• arange() – like Python’s built-in range

16

>>> np.zeros((2, 3))
array([[0., 0., 0.], [0., 0., 0.]])

>>> np.arange(10)
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> np.arange(2, 10, dtype=np.float)
array([2., 3., 4., 5., 6., 7., 8., 9.])
>>> np.arange(2, 3, 0.2)
array([2. , 2.2, 2.4, 2.6, 2.8])

[FSU]

NUMPY ARRAYS
linspace()– creates arrays with a specified number of
elements, and spaced equally between the specified
beginning and end values.

random.random(shape) – creates arrays with random
floats over the interval [0,1).

17

>>> np.random.random((2,3))
array([[0.75688597, 0.41759916, 0.35007419],

[0.77164187, 0.05869089, 0.98792864]])

>>> np.linspace(1., 4., 6)
array([1. , 1.6, 2.2, 2.8, 3.4, 4.])

[FSU]

NUMPY
ARRAYS
Printing an array can
be done with the print
• statement (Python 2)

• function (Python 3)

18

>>> import numpy as np
>>> a = np.arange(3)
>>> print(a)
[0 1 2]
>>> a
array([0, 1, 2])
>>> b = np.arange(9).reshape(3,3)
>>> print(b)
[[0 1 2]
[3 4 5]
[6 7 8]]
>>> c =
np.arange(8).reshape(2,2,2)
>>> print(c)
[[[0 1]
[2 3]]

[[4 5]
[6 7]]]

[FSU]

INDEXING
Single-dimension indexing is accomplished as usual.

Multi-dimensional arrays support multi-dimensional indexing.

19

>>> x = np.arange(10)
>>> x[2]
2
>>> x[-2]
8

>>> x.shape = (2,5) # now x is 2-dimensional
>>> x[1,3]
8
>>> x[1,-1]
9

INDEXING
Using fewer dimensions to index will result in a subarray:

This means that x[i, j] == x[i][j] but the second method is
less efficient.

20

>>> x = np.arange(10)
>>> x.shape = (2,5)
>>> x[0]
array([0, 1, 2, 3, 4])

INDEXING
Slicing is possible just as it is for typical Python sequences:

21

>>> x = np.arange(10)
>>> x[2:5]
array([2, 3, 4])
>>> x[:-7]
array([0, 1, 2])
>>> x[1:7:2]
array([1, 3, 5])
>>> y = np.arange(35).reshape(5,7)
>>> y[1:5:2,::3]
array([[7, 10, 13], [21, 24, 27]])

ARRAY OPERATIONS
Basic operations apply element-wise. The result is a new
array with the resultant elements.

22

>>> a = np.arange(5)
>>> b = np.arange(5)
>>> a+b
array([0, 2, 4, 6, 8])
>>> a-b
array([0, 0, 0, 0, 0])
>>> a**2
array([0, 1, 4, 9, 16])
>>> a>3
array([False, False, False, False, True], dtype=bool)
>>> 10*np.sin(a)
array([0., 8.41470985, 9.09297427, 1.41120008, -
7.56802495])
>>> a*b
array([0, 1, 4, 9, 16])

ARRAY OPERATIONS
Since multiplication is
done element-wise,
you need to
specifically perform a
dot product to perform
matrix multiplication.

23

>>> a = np.zeros(4).reshape(2,2)
>>> a
array([[0., 0.],

[0., 0.]])
>>> a[0,0] = 1
>>> a[1,1] = 1
>>> b = np.arange(4).reshape(2,2)
>>> b
array([[0, 1],

[2, 3]])
>>> a*b
array([[0., 0.],

[0., 3.]])
>>> np.dot(a,b)
array([[0., 1.],

[2., 3.]])

ARRAY OPERATIONS
There are also some
built-in methods of
ndarray objects.

Universal functions
which may also be
applied include exp,
sqrt, add, sin,
cos, etc.

24

>>> a = np.random.random((2,3))
>>> a
array([[0.68166391, 0.98943098,
0.69361582],

[0.78888081, 0.62197125,
0.40517936]])
>>> a.sum()
4.1807421388722164
>>> a.min()
0.4051793610379143
>>> a.max(axis=0)
array([0.78888081, 0.98943098,
0.69361582])
>>> a.min(axis=1)
array([0.68166391, 0.40517936])

ARRAY
OPERATIONS
An array shape
can be
manipulated by a
number of
methods.

resize(size)
will modify an
array in place.

reshape(size)
will return a copy
of the array with a
new shape.

25

>>> a =
np.floor(10*np.random.random((3,4)))
>>> print(a)
[[9. 8. 7. 9.]
[7. 5. 9. 7.]
[8. 2. 7. 5.]]
>>> a.shape
(3, 4)
>>> a.ravel()
array([9., 8., 7., 9., 7., 5., 9.,
7., 8., 2., 7., 5.])
>>> a.shape = (6,2)
>>> print(a)
[[9. 8.]
[7. 9.]
[7. 5.]
[9. 7.]
[8. 2.]
[7. 5.]]
>>> a.transpose()
array([[9., 7., 7., 9., 8., 7.],

[8., 9., 5., 7., 2., 5.]])

LINEAR ALGEBRA
One of the most common
reasons for using the
NumPy package is its
linear algebra module.

It’s like Matlab, but free!

26

>>> from numpy import *
>>> from numpy.linalg import *
>>> a = array([[1.0, 2.0],

[3.0, 4.0]])
>>> print(a)
[[1. 2.]
[3. 4.]]
>>> a.transpose()
array([[1., 3.],

[2., 4.]])
>>> inv(a) # inverse
array([[-2. , 1.],

[1.5, -0.5]])

LINEAR ALGEBRA

27

(We’ll talk about this stuff as needed in
the March/April machine learning and
statistics lectures.)

>>> u = eye(2) # unit 2x2 matrix; "eye" represents "I"
>>> u
array([[1., 0.],

[0., 1.]])
>>> j = array([[0.0, -1.0], [1.0, 0.0]])
>>> dot(j, j) # matrix product
array([[-1., 0.],

[0., -1.]])
>>> trace(u) # trace (sum of elements on diagonal)
2.0
>>> y = array([[5.], [7.]])
>>> solve(a, y) # solve linear matrix equation
array([[-3.],

[4.]])
>>> eig(j) # get eigenvalues/eigenvectors of matrix
(array([0.+1.j, 0.-1.j]),
array([[0.70710678+0.j, 0.70710678+0.j],

[0.00000000-0.70710678j,
0.00000000+0.70710678j]]))

SCIPY?
In its own words:

Basically, SciPy contains various tools and functions for
solving common problems in scientific computing.

28

SciPy is a collection of mathematical algorithms and
convenience functions built on the NumPy extension of Python.
It adds significant power to the interactive Python session by
providing the user with high-level commands and classes for
manipulating and visualizing data.

SCIPY
SciPy gives you access to a ton of specialized mathematical functionality.
• Just know it exists. We won’t use it much in this class.
Some functionality:
• Special mathematical functions (scipy.special) -- elliptic, bessel, etc.
• Integration (scipy.integrate)
• Optimization (scipy.optimize)
• Interpolation (scipy.interpolate)
• Fourier Transforms (scipy.fftpack)
• Signal Processing (scipy.signal)
• Linear Algebra (scipy.linalg)
• Compressed Sparse Graph Routines (scipy.sparse.csgraph)
• Spatial data structures and algorithms (scipy.spatial)
• Statistics (scipy.stats)
• Multidimensional image processing (scipy.ndimage)
• Data IO (scipy.io) – overlaps with pandas, covers some other formats

29

ONE SCIPY EXAMPLE
We can’t possibly tour all of the SciPy library and, even if we
did, it might be a little boring.
• Often, you’ll be able to find higher-level modules that will work

around your need to directly call low-level SciPy functions

Say you want to compute an integral:

!
"

#
sin 𝑥 𝑑𝑥

30

SCIPY.INTEGRATE
We have a function object – np.sin defines the sin function
for us.
We can compute the definite integral from 𝑥 = 0 to 𝑥 = 𝜋
using the quad function.

31

>>> res = scipy.integrate.quad(np.sin, 0, np.pi)
>>> print(res)
(2.0, 2.220446049250313e-14) # 2 with a very small error
margin!
>>> res = scipy.integrate.quad(np.sin, -np.inf, +np.inf)
>>> print(res)
(0.0, 0.0) # Integral does not converge

SCIPY.INTEGRATE
Let’s say that we don’t have a function object, we only have
some (x,y) samples that “define” our function.
We can estimate the integral using the trapezoidal rule.

32

>>> sample_x = np.linspace(0, np.pi, 1000)
>>> sample_y = np.sin(sample_x) # Creating 1,000 samples
>>> result = scipy.integrate.trapz(sample_y, sample_x)
>>> print(result)
1.99999835177

>>> sample_x = np.linspace(0, np.pi, 1000000)
>>> sample_y = np.sin(sample_x) # Creating 1,000,000
samples
>>> result = scipy.integrate.trapz(sample_y, sample_x)
>>> print(result)
2.0

WRAP UP: FIRST PART
Shift thinking from imperative coding to operations on
datasets

Numpy: A low-level abstraction that gives us really fast multi-
dimensional arrays

Next class:
Pandas: Higher-level tabular abstraction and operations to
manipulate and combine tables

Reading Homework focuses on Pandas and SQL: Aim to
release by tomorrow

33

REMAINDER OF
TODAY’S LECTURE

34

Data
collection

Data
processing

Exploratory
analysis

&
Data viz

Analysis,
hypothesis
testing, &

ML

Insight &
Policy

Decision

Quick best practices
for managing this monstrosity.

REPRODUCIBILITY
Extremely important aspect of data analysis

• “Starting from the same raw data, can we reproduce your analysis
and obtain the same results?”

Using libraries helps:
• Since you don’t reimplement everything, reduce programmer error

• Large user bases serve as “watchdog” for quality and correctness

Standard practices help:
• Version control: git, git, git, …, git, svn, cvs, hg, Dropbox

• Unit testing: unittest (Python), RUnit (R), testthat

• Share and publish: github, gitlab

35

Many slides in this lecture adapted from Hector Corrado Bravo

REPRODUCIBILITY
Open data:
“Open data is the idea that some data should be freely available
to everyone to use and republish as they wish, without restrictions
from copyright, patents or other mechanisms of control”

Open Data movement website
• http://www.opendatafoundation.org/

36

http://www.opendatafoundation.org/

PRACTICAL TIPS
Many tasks can be organized in modular manner:
• Data acquisition:

• Get data, put it in usable format (many ‘join’ operations),
clean it up

• Algorithm/tool development:

• If new analysis tools are required
• Computational analysis:

• Use tools to analyze data
• Communication of results:

• Prepare summaries of experimental results, plots,
publication, upload processed data to repositories

37

Usually a single language or tool does not handle all of
these equally well – choose the best tool for the job!

PRACTICAL TIPS
Modularity requires organization and careful thought
In Data Science, we wear two hats:
• Algorithm/tool developer

• Experimentalist: we don’t get trained to think this way
enough!

It helps two consciously separate these two jobs

38

THINK LIKE AN
EXPERIMENTALIST
Plan your experiment
Gather your raw data
Gather your tools
Execute experiment
Analyze
Communicate

39

THINK LIKE AN
EXPERIMENTALIST
Let this guide your organization. One potential structure for
organizing a project:

40

project/
| data/
| | processing_scripts
| | raw/
| | proc/
| tools/
| | src/
| | bin/
| exps
| | pipeline_scripts
| | results/
| | analysis_scripts
| | figures/

THINK LIKE AN
EXPERIMENTALIST
Keep a lab notebook!
Literate programming tools are making this easier for
computational projects:
• http://en.wikipedia.org/wiki/Literate_programming (Lec #2!)

• https://ipython.org/

• http://rmarkdown.rstudio.com/
• http://jupyter.org/

41

http://en.wikipedia.org/wiki/Literate_programming

THINK LIKE AN
EXPERIMENTALIST
Separate experiment from analysis from communication
• Store results of computations, write separate scripts to analyze

results and make plots/tables

Aim for reproducibility
• There are serious consequences for not being careful

• Publication retraction
• Worse:

http://videolectures.net/cancerbioinformatics2010_baggerly_i
rrh/

• Lots of tools available to help, use them! Be proactive: learn
about them on your own!

42

http://videolectures.net/cancerbioinformatics2010_baggerly_irrh/

BIAS, ETHICS, & RESPONSIBILITY

DATA SCIENCE LIFECYCLE: AN
ALTERNATE VIEW

44

EXAMPLES OF BIAS
Genetic testing
• Genetic tests for heart disorder and race-biased risk

(NYTimes)

• Race-bias in ancestry reports

Search results / feed optimization
• Google
• Facebook

45

http://www.nytimes.com/2016/08/18/science/genetic-tests-for-a-heart-disorder-mistakenly-find-blacks-at-risk.html?smprod=nytcore-iphone&smid=nytcore-iphone-share
http://qz.com/765879/23andme-has-a-race-problem-when-it-comes-to-ancestry-reports-for-non-whites/
http://www.politico.com/magazine/story/2015/08/how-google-could-rig-the-2016-election-121548
http://nymag.com/selectall/2016/04/could-facebook-swing-the-election.html

COMBATING BIAS
Fairness through blindness:
• Don’t let an algorithm look at protected attributes

Examples currently in use ??????????
• Race

• Gender
• Sexuality

• Disability

• Religion

Problems with this approach ?????????

46

COMBATING BIAS
Demographic parity:
• A decision must be independent of the protected attribute
• E.g., a loan application’s acceptance rate is independent of an

applicant’s race (but can be depenedent on non-protected
features like salary)

Formally: binary decision variable C, protected attribute A
• P{ C = 1 | A = 0 } = P{ C = 1 | A = 1 }

Membership in a protected class should have no correlation
with the final decision.
• Problems ????????

47

Example from Moritz Hardt’s blog

COMBATING BIAS
What if the decision isn’t the thing that matters?
“Consider, for example, a luxury hotel chain that renders a promotion
to a subset of wealthy whites (who are likely to visit the hotel) and a
subset of less affluent blacks (who are unlikely to visit the hotel). The
situation is obviously quite icky, but demographic parity is completely
fine with it so long as the same fraction of people in each group see
the promotion.”

Demographic parity allows classifiers that select qualified
candidates in the “majority” demographic and unqualified
candidate in the “minority” demographic, within a protected
attribute, so long as the expected percentages work out.

More: http://blog.mrtz.org/2016/09/06/approaching-fairness.html

48

Example from Moritz Hardt’s blog

FATML
This stuff is really tricky (and really important).
• It’s also not solved, even remotely, yet!

• CMSC498/499

New community: Fairness, Accountability, and Transparency in
Machine Learning (aka FATML)

“… policymakers, regulators, and advocates have expressed
fears about the potentially discriminatory impact of machine
learning, with many calling for further technical research into the
dangers of inadvertently encoding bias into automated decisions.”

49

F IS FOR FAIRNESS
In large data sets, there is always proportionally less data
available about minorities.
Statistical patterns that hold for the majority may be invalid
for a given minority group.
Fairness can be viewed as a measure of diversity in the
combinatorial space of sensitive attributes, as opposed to
the geometric space of features.

50

Thanks to: Faez Ahmed

A IS FOR
ACCOUNTABILITY
Accountability of a mechanism implies an obligation to
report, explain, or justify algorithmic decision-making as well
as mitigate any negative social impacts or potential harms.
• Current accountability tools were developed to oversee human

decision makers

• They often fail when applied to algorithms and mechanisms
instead

Example, no established methods exist to judge the intent of
a piece of software. Because automated decision systems
can return potentially incorrect, unjustified or unfair results,
additional approaches are needed to make such systems
accountable and governable.

51

Thanks to: Faez Ahmed

T IS FOR
TRANSPARENCY
Automated ML-based algorithms make many important
decisions in life.
• Decision-making process is opaque, hard to audit

A transparent mechanism should be:
• understandable;

• more meaningful;
• more accessible; and

• more measurable.

52

Thanks to: Faez Ahmed

DATA COLLECTION
What data should (not) be collected
Who owns the data
Whose data can (not) be shared
What technology for collecting, storing, managing data
Whose data can (not) be traded
What data can (not) be merged
What to do with prejudicial data

53

Thanks to: Kaiser Fung

DATA MODELING
Data is biased (known/unknown)
• Invalid assumptions

• Confirmation bias

Publication bias
• WSDM 2017: https://arxiv.org/abs/1702.00502
Badly handling missing values

54

Thanks to: Kaiser Fung

https://arxiv.org/abs/1702.00502

DEPLOYMENT
Spurious correlation / over-generalization
Using “black-box” methods that cannot be explained
Using heuristics that are not well understood
Releasing untested code
Extrapolating
Not measuring lifecycle performance (concept drift in ML)

55

Thanks to: Kaiser Fung

We will go over ways to counter
this in the ML/stats/hypothesis
testing portion of the course

GUIDING PRINCIPLES
Start with clear user need and public benefit
Use data and tools which have minimum intrusion necessary
Create robust data science models
Be alert to public perceptions
Be as open and accountable as possible
Keep data secure

56

Thanks to: UK cabinet office

SOME REFERENCES
Presentation on ethics and data analysis, Kaiser Fung @
Columbia Univ. http://andrewgelman.com/wp-
content/uploads/2016/04/fung_ethics_v3.pdf
O’Neil, Weapons of math destruction.
https://www.amazon.com/Weapons-Math-Destruction-Increases-
Inequality/dp/0553418815
UK Cabinet Office, Data Science Ethical Framework.
https://www.gov.uk/government/publications/data-science-
ethical-framework
Derman, Modelers’ Hippocratic Oath.
http://www.iijournals.com/doi/pdfplus/10.3905/jod.2012.20.1.035
Nick D’s MIT Tech Review Article.
https://www.technologyreview.com/s/602933/how-to-hold-
algorithms-accountable/

57

http://andrewgelman.com/wp-content/uploads/2016/04/fung_ethics_v3.pdf
https://www.amazon.com/Weapons-Math-Destruction-Increases-Inequality/dp/0553418815
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/524298/Data_science_ethics_framework_v1.0_for_publication__1_.pdf
http://www.iijournals.com/doi/pdfplus/10.3905/jod.2012.20.1.035
https://www.technologyreview.com/s/602933/how-to-hold-algorithms-accountable/

NEXT CLASS:
PANDAS, TIDY DATA & (MAYBE) START

ON RELATIONAL MODEL OF DATA

58

