
INTRODUCTION TO
DATA SCIENCE
JOHN P DICKERSON

Lecture #2 – 08/29/2019

CMSC320
Tuesdays & Thursdays
5:00pm – 6:15pm

ANNOUNCEMENTS
Register on Piazza: piazza.com/umd/fall2019/cmsc320
• 210 have registered already
• 88 have not registered yet

If you were on Piazza, you’d know …
• Project 0 is out! It is “due” next Wednesday evening.
• Link: https://github.com/cmsc320/fall2019/tree/master/project0

We’ve also linked some reading for the week!
• First quiz will be due Thursday at noon.
• (Quiz should be up on ELMS now.)

2

https://github.com/cmsc320/fall2019/tree/master/project0

THE DATA LIFECYCLE

3

Data
collection

Data
processing

Exploratory
analysis

&
Data viz

Analysis,
hypothesis
testing, &

ML

Insight &
Policy

Decision

TODAY’S LECTURE

4

Data
collection

Data
processing

Exploratory
analysis

&
Data viz

Analysis,
hypothesis
testing, &

ML

Insight &
Policy

Decision

BUT FIRST, SNAKES!
Python is an interpreted, dynamically-typed, high-level,
garbage-collected, object-oriented-functional-imperative, and
widely used scripting language.
• Interpreted: instructions executed without being compiled into

(virtual) machine instructions*

• Dynamically-typed: verifies type safety at runtime

• High-level: abstracted away from the raw metal and kernel

• Garbage-collected: memory management is automated
• OOFI: you can do bits of OO, F, and I programming

Not the point of this class!
• Python is fast (developer time), intuitive, and used in industry!

5

*you can compile Python source, but it’s not required

THE ZEN OF PYTHON
• Beautiful is better than ugly.
• Explicit is better than implicit.
• Simple is better than complex.
• Complex is better than complicated.
• Flat is better than nested.
• Sparse is better than dense.
• Readability counts.
• Special cases aren't special enough to break the rules …
• … although practicality beats purity.
• Errors should never pass silently …
• … unless explicitly silenced.

6

Thanks: SDSMT ACM/LUG

LITERATE
PROGRAMMING
Literate code contains in one document:
• the source code;

• text explanation of the code; and

• the end result of running the code.

Basic idea: present code in the order that logic and flow of
human thoughts demand, not the machine-needed ordering
• Necessary for data science!

• Many choices made need textual explanation, ditto results.

Stuff you’ll be using in Project 0 (and beyond)!

7

JUPYTER PROJECT
Started as iPython Notebooks, a web-based frontend to the
iPython Shell

• Notebook functionality separated out a few years ago
• Now supports over 40 languages/kernels
• Notebooks can be shared easily
• Can leverage big data tools like Spark

Apache Zeppelin:
• https://www.linkedin.com/pulse/comprehensive-comparison-

jupyter-vs-zeppelin-hoc-q-phan-mba-

Several others including RStudio (specific to R)

8

https://www.linkedin.com/pulse/comprehensive-comparison-jupyter-vs-zeppelin-hoc-q-phan-mba-

10-MINUTE PYTHON
PRIMER
Define a function:

Python is whitespace-delimited
Define a function that returns a tuple:

9

def my_func(x, y):
if x > y:

return x
else:

return y

def my_func(x, y):
return (x-1, y+2)

(a, b) = my_func(1, 2)

a = 0; b = 4

USEFUL BUILT-IN FUNCTIONS:
COUNTING AND ITERATING
len: returns the number of items of an enumerable object

range: returns an iterable object

enumerate: returns iterable tuple (index, element) of a list

https://docs.python.org/3/library/functions.html

len([‘c’, ‘m’, ‘s’, ‘c’, 3, 2, 0])

7

list(range(10))

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

enumerate([“311”, “320”, “330”])

[(0, “311”), (1, “320”), (2, “330”)]

10

USEFUL BUILT-IN FUNCTIONS:
MAP AND FILTER
map: apply a function to a sequence or iterable

filter: returns a list* of elements for which a predicate is true

We’ll go over in much greater depth with pandas/numpy.

11

arr = [1, 2, 3, 4, 5]
map(lambda x: x**2, arr)

[1, 4, 9, 16, 25]

arr = [1, 2, 3, 4, 5, 6, 7]
filter(lambda x: x % 2 == 0, arr)

[2, 4, 6]

*in Python 3, returns Iterable

PYTHONIC
PROGRAMMING
Basic iteration over an array in Java:

Direct translation into Python:

A more “Pythonic” way of iterating:

idx = 0
while idx < len(arr):

print(arr[idx]); idx += 1

int[] arr = new int[10];
for(int idx=0; idx<arr.length; ++idx) {

System.out.println(arr[idx]);
}

for element in arr:
print(element)

12

LIST COMPREHENSIONS
Construct sets like a mathematician!
• P = { 1, 2, 4, 8, 16, …, 216 }
• E = { x | x in ℕ and x is odd and x < 1000 }
Construct lists like a mathematician who codes!

Very similar to map, but:
• You’ll see these way more than map in the wild
• Many people consider map/filter not “pythonic”
• They can perform differently (map is “lazier”)

13

P = [2**x for x in range(17)]

E = [x for x in range(1000) if x % 2 != 0]

EXCEPTIONS
Syntactically correct statement throws an exception:
• tweepy (Python Twitter API) returns “Rate limit exceeded”

• sqlite (a file-based database) returns IntegrityError

14

print('Python', python_version())

try:
cause_a_NameError

except NameError as err:
print(err, '-> some extra text')

PYTHON 2 VS 3
Python 3 is intentionally backwards incompatible
• (But not that incompatible)
Biggest changes that matter for us:
• print “statement” à print(“function”)

• 1/2 = 0 à 1/2 = 0.5 and 1//2 = 0
• ASCII str default à default Unicode
Namespace ambiguity fixed:

i = 1

[i for i in range(5)]

print(i) # ????????

15

TO ANY CURMUDGEONS …
If you’re going to use Python 2 anyway, use the _future_
module:
• Python 3 introduces features that will throw runtime errors in

Python 2 (e.g., with statements)

• _future_ module incrementally brings 3 functionality into 2

• https://docs.python.org/2/library/__future__.html

from _future_ import division

from _future_ import print_function

from _future_ import please_just_use_python_3

16

SO, HOW DOES IMPORT WORK?
Python code is stored in module – simply put, a file full of
Python code
A package is a directory (tree) full of modules that also
contains a file called __init.py__

• Packages let you structure Python’s module namespace
• E.g., X.Y is a submodule Y in a package named X

For one module to gain access to code in another module, it
must import it

17

EXAMPLE

18

Load (sub)module sound.effects.echo
import sound.effects.echo
Must use full name to reference echo functions
sound.effects.echo.echofilter(input, output, delay=0.7)

https://docs.python.org/2/tutorial/modules.html

EXAMPLE

19

Load (sub)module sound.effects.echo
import sound.effects.echo
Must use full name to reference echo functions
sound.effects.echo.echofilter(input, output, delay=0.7)

https://docs.python.org/2/tutorial/modules.html

Load (sub)module sound.effects.echo
from sound.effects import echo
No longer need the package prefix for functions in echo
echo.echofilter(input, output, delay=0.7)

Load a specific function directly
from sound.effects.echo import echofilter
Can now use that function with no prefix
echofilter(input, output, delay=0.7)

PYTHON VS R (FOR
DATA SCIENTISTS)
There is no right answer here!
• Python is a “full”

programming language –
easier to integrate with
systems in the field

• R has a more mature set of
pure stats libraries …

• … but Python is catching up
quickly …

• … and is already ahead
specifically for ML.

You will see Python more in the
tech industry.

20

EXTRA RESOURCES
Plenty of tutorials on the web:
• https://www.learnpython.org/

Work through Project 0, which will take you through some
baby steps with Python and the Pandas library:
• (We’ll also post some more readings soon.)

Come hang out at office hours (or chat with me privately)
• All office hours will be on the website/Piazza by tomorrow.

• Will have coverage MTWThF.

21

22

TODAY’S LECTURE

23

Data
collection

Data
processing

Exploratory
analysis

&
Data viz

Analysis,
hypothesis
testing, &

ML

Insight &
Policy

Decision

with

Thanks: Zico Kolter’s 15-388, Amol Deshpande, Nick Mattei

24

WHAT IS THIS “DATA”?

TABULAR DATA
Data is an abstraction of some real world entity.
• Also called: instance, example, record, object, case, individual.

Each of these entities is described by a set of features.
• Sometimes called variables, features, attributes, …

Can be processed into an n (number of entities) by m
(number of attributes) matrix.
• Result of merging & processing different records!

• Picking the data that goes into this table has both technical
and ethical concerns (recall: Target, Netflix, AOL examples)

25

ID Title Author Year Cover Edition Price
1 Emma Austen 1815 Paper 20th $5.75
2 Dracula Stoker 1897 Hard 15th $12.00
3 Ivanhoe Scott 1820 Hard 8th $25.00
4 Kidnapped Stevenson 1886 Paper 11th $5.00

Quick teaser. We’ll go
into greater depth when

discussing tidy data.

CLASSICAL STATISTICAL
VIEW OF DATA
There are four classical types of data

26

Data Types

Categorical
Nominal

Ordinal

Numerical
Interval

Ratio

CATEGORICAL DATA: TAKES
A VALUE FROM A FINITE SET
Nominal (aka Categorical) Data:
• Values have names: describe the categories, classes, or states of things
• Marital status, drink type, or some binary attribute

• Cannot compare easily, thus cannot naturally order them
Ordinal Data:
• Values have names: describe the categories, classes, or states of things
• However, there is an ordering over the values:

• Strongly like, like, neutral, strongly dislike
• Lacks a mathematical notion of distance between the values

This distinction can be blurry…
• Is there an ordering over: sunny, overcast, rainy?

27

NUMERICAL DATA: MEASURED
USING INTEGERS OR REALS
Interval Scale:
• Scale with fixed but arbitrary interval (e.g., dates)
• The difference between two values is meaningful:

• Difference between 9/1/2019 and 10/1/2019 is the same as the
difference between 9/1/2018 and 10/1/2018

• Can’t compute ratios or scales: e.g., what unit is 9/1/2019 *
8/2/2020?

Ratio Scale:
• All the same properties as interval scale data, but the scale of

measurement also possesses a true-zero origin
• Can look at the ratio of two quantities (unlike interval)
• E.g., zero money is an absolute, one money is half as much as

two money, and so on

28

NUMERICAL DATA:
EXAMPLES
Temperatures:
• Celsius / Fahrenheit: interval or ratio scale ???????????

• Interval: 0C is not 0 heat, but is an arbitrary fixed point
• Hence, we can’t say that 30F is twice as warm as 15F.

• Kelvin (K): interval or ratio scale ???????????
• Ratio: 0K is assumed to mean zero heat, a true fixed point

Weight:
• Grams: interval or ratio scale ??????????

• Ratio: 0g served as fixed point, 4g is twice 2g, …

29

GENERAL RULES

30

Thanks to GraphPad

OK to compute.... Nominal Ordinal Interval Ratio
frequency
distribution Yes Yes Yes Yes

median and
percentiles No Yes Yes Yes

add or subtract No No Yes Yes
mean, standard
deviation, standard
error of the mean

No No Yes Yes

ratio, or coefficient of
variation No No No Yes

? ? ? ?

GENERAL RULES

31

OK to compute.... Nominal Ordinal Interval Ratio
frequency
distribution Yes Yes Yes Yes

median and
percentiles No Yes Yes Yes

add or subtract No No Yes Yes
mean, standard
deviation, standard
error of the mean

No No Yes Yes

ratio, or coefficient of
variation No No No Yes

? ? ? ?

GENERAL RULES

32

OK to compute.... Nominal Ordinal Interval Ratio
frequency
distribution Yes Yes Yes Yes

median and
percentiles No Yes Yes Yes

addition or
subtraction No No Yes Yes

mean, standard
deviation, standard
error of the mean

No No Yes Yes

ratio, or coefficient of
variation No No No Yes

? ? ? ?

GENERAL RULES

33

OK to compute.... Nominal Ordinal Interval Ratio
frequency
distribution Yes Yes Yes Yes

median and
percentiles No Yes Yes Yes

addition or
subtraction No No Yes Yes

mean or standard
deviation No No Yes Yes

ratio, or coefficient of
variation No No No Yes

? ? ? ?

GENERAL RULES

34

OK to compute.... Nominal Ordinal Interval Ratio
frequency
distribution Yes Yes Yes Yes

median and
percentiles No Yes Yes Yes

addition or
subtraction No No Yes Yes

mean or standard
deviation No No Yes Yes

ratio, or coefficient of
variation No No No Yes? ? ? ?

GENERAL RULES

35

OK to compute.... Nominal Ordinal Interval Ratio
frequency
distribution Yes Yes Yes Yes

median and
percentiles No Yes Yes Yes

addition or
subtraction No No Yes Yes

mean or standard
deviation No No Yes Yes

ratio, or coefficient of
variation No No No Yes

DATA MANIPULATION AND
COMPUTATION
Data Science == manipulating and computing on data

Large to very large, but somewhat “structured” data
We will see several tools for doing that this semester

Thousands more out there that we won’t cover

Need to learn to shift thinking from:
Imperative code to manipulate data structures

to:
Sequences/pipelines of operations on data

Should still know how to implement the operations themselves,
especially for debugging performance (covered in classes like 420,
424), but we won’t cover that much

36

DATA MANIPULATION AND
COMPUTATION
1. Data Representation, i.e., what is the natural way to think

about given data

2. Data Processing Operations, which take one or more datasets
as input and produce one or more datasets as output

37

Indexing
Slicing/subsetting
Filter
‘map’ à apply a function to every
element
’reduce/aggregate’ à combine
values to get a single scalar (e.g.,
sum, median)

Given two vectors: Dot and cross
products

0.1 2 3.2 6.5 3.4 4.1

“data” ”representation” ”i.e.”

One-dimensional Arrays, Vectors

DATA MANIPULATION AND
COMPUTATION
1. Data Representation, i.e., what is the natural way to think

about given data

2. Data Processing Operations, which take one or more datasets
as input and produce one or more datasets as output

38

Indexing
Slicing/subsetting
Filter
‘map’ à apply a function to every
element
’reduce/aggregate’ à combine
values across a row or a column (e.g.,
sum, average, median etc..)

n-dimensional arrays

DATA MANIPULATION AND
COMPUTATION
1. Data Representation, i.e., what is the natural way to think

about given data

2. Data Processing Operations, which take one or more datasets
as input and produce one or more datasets as output

39

n-dimensional array operations
+
Linear Algebra

Matrix/tensor multiplication
Transpose
Matrix-vector multiplication
Matrix factorization

Matrices, Tensors

DATA MANIPULATION AND
COMPUTATION
1. Data Representation, i.e., what is the natural way to think

about given data

2. Data Processing Operations, which take one or more datasets
as input and produce one or more datasets as output

40

Filter
Map
Union

Reduce/Aggregate

Given two sets, Combine/Join using
“keys”

Group and then aggregate

Sets: of Objects

Sets: of (Key, Value Pairs)

(amol@cs.umd.edu,(email1, email2,…))

(john@cs.umd.edu,(email3, email4,…))

mailto:amol@cs.umd.edu

DATA MANIPULATION AND
COMPUTATION
1. Data Representation, i.e., what is the natural way to think

about given data

2. Data Processing Operations, which take one or more datasets
as input and produce one or more datasets as output

41

Filter rows or columns

”Join” two or more relations

”Group” and “aggregate” them

Relational Algebra formalizes some
of them

Structured Query Language (SQL)
Many other languages and
constructs, that look very similar

Tables/Relations == Sets of Tuples

DATA MANIPULATION AND
COMPUTATION
1. Data Representation, i.e., what is the natural way to think

about given data

2. Data Processing Operations, which take one or more datasets
as input and produce one or more datasets as output

42

Hierarchies/Trees/Graphs ”Path” queries

Graph Algorithms and
Transformations

Network Science

Somewhat more ad hoc and special-
purpose

Changing in recent years

DATA MANIPULATION AND
COMPUTATION
1. Data Representation, i.e., what is the natural way to think

about given data

2. Data Processing Operations, which take one or more datasets
as input and produce

• Why?
• Allows one to think at a higher level of abstraction, leading to

simpler and easier-to-understand scripts
• Provides ”independence” between the abstract operations and

concrete implementation
• Can switch from one implementation to another easily

• For performance debugging, useful to know how they are
implemented and rough characteristics

43

NEXT LECTURE

44

Data
collection

Data
processing

Exploratory
analysis

&
Data viz

Analysis,
hypothesis
testing, &

ML

Insight &
Policy

Decision

… on to the “collection”
part of things …

